» Recap

v End-to-End Optimization
v Input: SQL
e SQL is converted directly to something resembling relational algebra
e Some DBs (e.g., Postgres) use a more complex structure that represents a joint cross-product, selection, and projection
v Naive RA
v Some RA rewrites can be applied to RA to produce guaranteed faster plans
e Selection Pushdown
¢ Join Conversion
¢ In some situations, Projection pushdown may also help
¢ Eliminating redundant “Distinct” operators
e Eliminating redundant “Sort” operators
v These operations are applied to a “fixed point”
e As long as an opportunity exists to apply the optimization, it is applied
e The output of this stage is just another RA tree
v Optimized RA
v The system next explores rewrites that do not guarantee better performance
¢ Different Join Orders
o Different Access Paths
v The system builds an execution plan for each possibility
e Aplan also “decorates” the RA plan, noting the specific algorithm used to implement it.

e The system estimates the cost of each possible plan
v Overview

v How do we estimate |0 Cost?
e Number of reads performed by each operator
e Number of writes performed by each operator
v What about communicating between operators?
e Assume operators can communicate with each other for free.
v Costs only include:
e The cost of materializing the data IF it needs to be materialized on disk
e The cost of reading the data back in IF it needs to be read back in.
v What else do we need?
e For some of these estimates, we’ll need to be able to estimate the size of each table (call the # of pages in R: |R|)
v Basic properties of the data:
e Key Columns

e Distribution of Values

v 10 Costs

v File Scan (R)

e Number of 10s : |R|
v Index Lookup (o(R) where R is a file scan)

v Number of I0s for a Hash Index : |o(R)|

e How big is this? Return to it later.

e Number of 10s for a B+Tree Index with directory pages of size B: |o(R)| + logs(|R)

v Selection (o(R))

e Number of I0s : 0 (never need to materialize a selection)

v Projection (r(R))
e Number of I0s : 0 (never need to materialize a projection)
v Union

e Number of I0s : 0 (never need to materialize a BAG union — see distinct for set union)

<

Sort (t(R)) — External Sort with B pages of memory
e Number of IOs : ~2+logs(|R| / 2)

<

Cross-Product (R x S) — BNLJ with B pages of memory for blocking R
v Number of I10s : |S| + (|R| / B)+(|S|)
o Need to write all of S to disk once: |S| pages
v Repeat (|R|/ B) times...
e Read B pages of data from source operator R: Free

» Join the block with the materialized data in S, one tuple at a time: |S|

v More IO Costs

v Join (R X S) — 1-pass Hash/Tree Join
e Number of I10s: 0 (entirely in-memory)
v Join (R X S) — 2-pass Hash Join
v Number of 10s: 2¢(|R| + |S])
e Write all |R| and |S] to disk, bucketizing: |R| + |S|
e Read in each bucket: |R| + [S|
v Join (t(R) X t(S)) — Sort/Merge Join
e Number of I10s: 0 + cost of the 1(S) (Merge step is free)

v Join (R Xra-sa S) — Index Nested Loop Join (assuming index on S)

v Number of 10s: |R| ¢ [cost of one index lookup: Ofconst] = s.A(S)]

« Each inner loop is basically one Index Scan
v Aggregation (y(R)) — In-memory
 Number of 10s: 0
v Aggregation (y(R)) — On-Disk, Hash-Based

v Number of I0s: 2|R|

e Write each bucket out, read each bucket in
v Aggregation (y(t(R)) — On-Disk, Sort-Based
e Number of I0s: 0 + cost of T(R)

« Distinct (6(R))— Works EXACTLY like Aggregation

+ Cardinality (Size) Estimation

v Most of the operators are straightforward
» n(R), T(R) : R
e« RUS:[R/+[S|
« RxS:|R|*|S|
« RXS: Identical to 6(R X S)...
v Some are hard
e o(R)
* ¥(R) &&(R)

v Selection : Compute Selectivity (or % tuples passed through)
v Generic (Default) Heuristic:
e Selectivity = 0.5
e Works ... mostly well 70% of the time. Very brittle and liable to break things
e Be wary: DBMSes actually do this!
v R.A=[Const]
e If R.Ais a Key, then precisely 1 tuple passes through... given
v ldea: Collect stats: # of distinct values
e Selectivity = 1/ # of distinct values of R.A
e Works well... but only for discrete data (Strings, Ints, Dates)
e Also gives you “Key” for free
e Also works for R.A in [List]
v R.A < [Const] (also works for others)
v Idea: Collect stats: Min/Max, and assume a uniform distribution of values
e Selectivity = ([Const] - Min) / (Max - Min)
e Works for continuous data (Floats)
v RA=R.B
e (the Equijoin condition)
v ldea 1: Assume no correlation
e Becomes identical to either R.A = const or R.B = const
e For each row, you’re testing whether R.B = Some specific, somewhat arbitrary value
e Both are an upper bound on the selectivity, so take whichever reduction gives you the lower value
v C1 AND C2

e Assuming no correlation between C1 and C2: Selectivity(C1) « Selectivity(C2)

« Going more fancy: Histograms (See attached)

