» Recap

v Cardinality (Size) Estimation

v Most of the operators are straightforward
e m(R), T(R) : R
e RUS:|R|+|S|
e RxS:|R*I|S|
e R X S:Identical to o(Rx S)...
v Some are hard
e o(R)
* ¥(R) &5(R)
v Selection : Compute Selectivity (or % tuples passed through)
v Generic (Default) Heuristic:
e Selectivity = 0.5
e Works ... mostly well 70% of the time. Very brittle and liable to break things
* Be wary: DBMSes actually do this!
v R.A =[Const]
v Idea 1:
e Compute COUNT(*) for every value value of A
e Gives exact selectivity
v Idea?2
e Min/Max COUNT(*)
e Gives lower/upper bound on selectivity
v Idea3
e Avg COUNT(*) === Min/Max(A) (for a continuous domain) + Total Count == # distinct values of A + Total Count
e Gives selectivity in average case, assuming a uniform distribution
e Selectivity = Total Count / # distinct values of A

e Can we do better?

v Selectivity Estimation

v Other types of queries
v R.A < [Const] (also works for others)
v ldea: Collect stats: Min/Max, and assume a uniform distribution of values
e Selectivity = ([Const] - Min) / (Max - Min)
e Works for continuous data (Floats)
v RA=RB
e (the Equijoin condition)
v Idea 1: Assume no correlation
e Becomes identical to either R.A = const or R.B = const
e For each row, you're testing whether R.B = Some specific, somewhat arbitrary value
e Both R.A and R.B are an upper bound on the selectivity, so take whichever reduction gives you the lower value
¢ Interesting, this magically works for foreign key relationships
v C1AND C2
e Assuming no correlation between C1 and C2: Selectivity(C1) * Selectivity(C2)

v More complex ideas...

v Idea 4: Intermediate... Build a Histogram

e Store COUNT(*) for smaller ranges
e e.g., For 1 from 1-100, store 10 buckets: 1-10, 11-20, etc...
e Equality predicates are exactly the same as before.
v Range predicates:
¢ If the whole bucket is in the range, the entire count is in the range
e |f part of the bucket is in the range, make a uniform distribution assumption for the bucket.
v ldea 5: Wavelets
v Ever seen an image on a webpage load and it’s all blocky at first and then it gets clearer?
e That’s a progressive image.
e How could we make a progressive histogram?
v Overview
e Start with a completely uniform distribution
e What information do you need in order to go from this to a 2-bucket histogram?
v Idea 1: Split Bucket Ranges Evenly (e.g., 1-100 becomes 1-50, 51-100)
e Only need to communicate one integer Difference = (Left.Count - Right.Count)
v You have Total.Count = (Left.Count + Right.Count)
e Left.Count = (Total.Count + Difference) / 2
¢ Right.Count = (Total.Count - Difference) / 2

|

Idea 2: Communicate *Median* value (e.g., { 1, 45, 47, 48, 60, 72, 91, 99 } becomes 1-48, 49-100)

e Guaranteed to have an equal count on either side.

v Columnar Layouts

v Row-based layouts
e Store rows together
v Columnar-Layouts
e Store attributes together
v Option 1: Array of VALUE (Index = ROWID)
e Values with the same ROWID “join” together
v Key advantage: Can avoid loading multiple columns.
e Advertising datasets == 1000s of columns or more

e Costly if you only care about 5ish

|

Option 2: <ROWID, VALUE>
¢ Key advantage: Can reorder. Effectively a big secondary index.
¢ Often want both ROWID -> VALUE and VALUE -> ROWID
e Can Compress w/ Run-length encoding
v Other reasons to use Arrays of values
e Easier SIMD
* ROWID Joins become intersections of bit vectors
v Reasons not to use columnar layouts
e Updates are expensive

¢ Inserts are prohibitive

