Managing
Changing Data

April 4, 2017

Safely Changing Data

 When | make changes, how do | avoid breaking assumptions?
e Data Modeling
e Constraints

 \When | make changes, how do | avoid messing with other people’s
ongoing work"?

e [ransactions

 When | make changes, how do | keep track of things that | need to
keep track of?

e Stream Processing, Incremental View Maintenance

Defining Relations in SQL

CREATE TABLE Officers

(FirstName CHAR(20), -T- e
LastName CHAR(20), e scnema de 1EeS
Ship CHAR(S), not only the column
ID INTEGER _

) names, but also their

types (domains)

CREATE TABLE Ships
(ID CHAR(5),
Name CHAR(20),
Location CHAR(40)

)

Defining Relations in SQL

CREATE TABLE Officers
(FirstName CHAR(20), -

LastName CHAR(20),
Ship CHAR(5),
ID INTEGER

)

CREATE TABLE Ships

(ID CHAR(5),
Name CHAR(20),
Location CHAR(40)

)

ne schema defines

not only the column

ames, but also their
types (domains)

—or example a 20-
character string

Moditying Relations

Destroy the relation ‘Officers’
All schema information AND tuples are deleted

DROP TABLE Officers

Add a new column (field) to the Ships relation
Every tuple in the current instance is extended with a
‘null’ value in the new field

ALTER TABLE Ships
ADD COLUMN Commissioned DATE

Adding and Deleting Tuples

Insert single tuples using:

INSERT INTO Officers (FirstName, LastName, Ship)
VALUES (‘Benjamin’, ‘Sisko’, ‘74205')

Can delete all tuples satistying some condition (e.g., Ship = 2000)

DELETE FROM Officers O
WHERE O.Ship = ‘2000°

More powerful data manipulation commands are available in SQL
(We’'ll discuss them later in the course)

5

Data Modeling

e Schema: The structure of the data

o Structured Data: Relational, XML-DTD, etc...

e “Unstructured” Data; CSV, JSON
e But where does the schema come from?
* Data represents concepts!

* Model the concepts

cntity-Relation Model

* A pictorial representation of a schema
* Enumerates all entities in the schema
 Shows how entities are related
 Shows what is stored for each entity

e Shows restrictions (integrity constraints)

EFR Model Basics

rank

Officers

Entity: A real-world object distinguishable from other
objects. (e.g., a Starfleet Officer)

An entity Is described through a set of attributes

EFR Model Basics

rank

Officers

Entity Set: A collection of similar entities. (e.g., all Officers)
Entities in an entity set have the same set of attributes

Each attribute has a domain (e.g., integers, strings)

EFR Model Basics

rank

Officers

Entity sets must have a key, an attribute (or combination of attributes)
guaranteed to be unique for every entity in the set.

e Officer ID for officers

e Ship ID for ships

e UBIT for UB students

e Course Code+Semester for courses

Keys are underlined in ER Diagrams

ER Model Basicga ™

oid rank pid name

Officers @ Planet

Relationship: Associations between 2 or more entities.
Relationship Set: A collection of similar relationships.
(an n-ary relationship set relates Entity sets E1-En)

Relationships may have their own attributes.

EFR Model Basics

Officers

O
Q

rank

Subordinate Commander

|
@

There can be relationships between entities In the same entity sets

Key Constraints

o
a

rank i name name

Visited

o
o

rank

Officers

Planet

Officers

@ @ Subordinate Commander
rank shipid class

LN
Commands
Officers Crew Ship

Consider these relationships
e One ship can have many crew, but each crew member has only one ship
e Each officer has one commander, but officers might have many subordinates
e Fach planets may have been visited by many officers, and each officer may
have visited many planets

©
o

Key Constraints

ol [

. TO

]

©
o

U

OO0

B

1-to-1 1-to-Many

Consider these relationships

¥,

U

Many-to-1

A5

Q0o
X
cfeXc

Many-to-Many

e One ship can have many crew, but each crew member has only one ship
e Each officer has one commander, but officers might have many subordinates
e Each planets may have been visited by many ofticers, and each officer may

have visited many planets

Key Constraints

Key constraints identity entities that participate in
at most one relationship in a relationship set

We denote key-constraints with an arrow

Participation Constraints

oid rank shipid

Officers Ship

class

Participation constraints require participation in a relationship
(and are denoted as bold lines)

Participation Constraints

olia rank shipid

Officers Ship

Every Ship must have crew, and every officer must crew a ship.

class

Participation constraints require participation in a relationship
(and are denoted as bold lines)

Participation Constraints

oid rank shipid

class

Officers

Every Ship must have crew, and every officer must crew a ship.
Every Ship must have a commander.

Participation constraints require participation in a relationship
(and are denoted as bold lines)

Weak Entities

E

} Y
name
oid

rank

Officers Awarded

A weak entity can be identified uniquely only relative to the primary key
of another (owner) entity.

The weak entity must participate in a one-to-many relationship (one
owner, many weak entities)

ISA (‘Is a’) Hierarchies

ISA Hierarchies define entity inheritance
It we declare AISA B, then
every A is also considered to be a B

Overlap constraints: Can a ship be a shipid
cargo ship and a shuttlecraft?

Covering constraints: Does every ship Ships

have to be a cargo ship or a
shuttlecraft? @
ISA
/

Reasons for using ISA:
Adding descriptive attributes specific to Cargo Ships
a subclass (cargo ship capacity)

|dentitying entities in a specific type of
relationship (shuttlecraft of a big ship)

class

Parent
Ship

Aggregaﬂon

Aggregation: allows us to
@ treat a relationship as an

class

shipid entity set (for the purpose of

participating in other
relationships)

Ships

d

Officers

@)

rank | name)

Visited

Planet

Contrast with ternary relationship

Conceptual Design in ER

* Design choices

 Shoulc

attribut

a concept be modeled as an entity or an
e of another entity”

 Shoulc

a concept be modeled as an entity or a

relationship between entities”?

 What kind of relationship: Binary, Ternary, N-ary,
Aggregation?

e Constraints
* A lot of data semantics can (and should) be captured.

* Not all

constraints are expressible in ER diagrams.

Entity vs Attribute

* Expressing the Location of an Officer

 Option 1: An attribute of Officers

 Option 2: A Planets entity set and a relationship set Location
* Which we use depends on the semantics of the data.

e Can an Officer have multiple locations” (e.g., transporter
accidents, time travel, etc...)

e Attributes are single-valued, model Planets as entities.

* Are the details of locations relevant to queries? (i.e., Find all
officers on a Class-M planet).

e Attributes are atomic, model Planets as entities.

Entity vs Attribute

rank pid name

O
Q

Officers w Planet

Problem: Can only have one location for each
officer (No time ranges)

We want to encode multiple instances of the
descriptive attributes of the relationship instance

Entity vs Attribute

rank pid name

N

Officers %ﬂ% Planet

Solution: Add a duration entity and make location a
ternary relationship

O
Q

summary

 The ER Model is a popular way to design schemas
(and maps nicely to SQL)

e Basic Constructs: Entities, Relationships, and Sets
of both.

« Additional Constructs: \Weak Entities, ISA
hierarchies, Aggregation

* [here is no one ‘right' model for a given scenario.

 Understanding how to design a schema is important.

Integrity Constraints

® “Correctness” Properties on Relations
® ... enforced by the DBMS.

® Typically simple uniqueness/existence
properties, paralleled by ER Constraints

® ... we'll discuss more complex properties
when we discuss Triggers later in the term.

® Database optimizers benefit from constraints.

25

Integrity Constraints

Domain Constraints

® |imitations on valid values of a field.

Key Constraints

® A field(s) that must be unique for each row.
Foreign Key Constraints

® A field referencing a key of another relation.

® (Can also encode participation/|-many/many-1/1-1.
Table Constraints

® More general constraints based on queries.

26

Domain Constraints

® Stronger restrictions on the contents of a
field than provided by the field’s type

® eg,0<Rank <5

® Mostly present to prevent data-entry errors.

Postgres: CREATE DOMAIN Rank AS REAL
CHECK (0 < VALUE AND VALUE <= 5)

CREATE TABLE Officers (
Oracle:

Rank REAL,
CHECK (0 < Ra%k AND Rank <= 5));

Domain Constraints

® Special domain constraint: NOT NULL

® Field not allowed to contain NULL values.

CREATE TABLE Officer(
oid INTEGER NOT NULL,
name CHAR(50),
birthday DATE

) ;

28

Key Constraints

® A set of fields that uniquely identifies a
tuple in a relation.

® There can be multiple keys for a relation.

Name

birthday age

Officers

29

Key Constraints

® A set of fields that uniquely identifies a
tuple in a relation.

® There can be multiple keys for a relation.

Nname |
birthday) ’ age

Officers

29

Key Constraints

® A set of fields that uniquely identifies a
tuple in a relation.

® There can be multiple keys for a relation.

Name |
birthday ? age

Officers

29

Key Constraints

® A key satisfies the following two properties:

® No two distinct tuples have identical

values in all the fields of a key.

® T[wo officers can have the same name, or the same
birthday/age, but not both name and birthday/age.

® No subset of the fields of a key has the

above property.
® Name+Age+Birthday is not a key (it is a superkey)
® Name+Age is a key,and Name+Birthday is a key.

30

Defining Key Constraints

CREATE TABLE Officer(
olid INTEGER, name CHAR(50),
birthday DATE, age REAL,
UNIQUE (name, age),
CONSTRAINT OfficerDay UNIQUE (name, birthday),
PRIMARY KEY (oid)

) ;
@ birthday

Officers

31

oid

age

Defining Key Constraints

CREATE TABLE Officer(
olid INTEGER, name CHAR(50),
birthday DATE, age REAL,
UNIQUE (name, age),
CONSTRAINT OfficerDay UNIQUE (name, birthday),
PRIMARY KEY (oid)

) 7
UNIQUE identifies a key constraint

32

Defining Key Constraints

CREATE TABLE Officer(
01d INTEGER, name CHAR(50),

a;UNIQUE (name, agef*

PRIMARY KEY (oid)
)

UNIQUE identifies a key constraint

32

Defining Key Constraints

CREATE TABLE Officer(
olid INTEGER, name CHAR(50),
birthday DATE, age REAL,
UNIQUE (name, age),
CONSTRAINT OfficerDay UNIQUE (name, birthday),
PRIMARY KEY (oid)

) 7
UNIQUE identifies a key constraint

PRIMARY KEY identifies a key constraint that will
commonly be used to refer to tuples in this relation.

33

Defining Key Constraints

CREATE TABLE Officer(
olid INTEGER, name CHAR(50),
birthday DATE, age REAL,
UNIQUE (name, age)
NSTREINT O£ ;erDay UNIQUE (name, birthday),

UNIQUE identifies a key constraint

PRIMARY KEY identifies a key constraint that will
commonly be used to refer to tuples in this relation.

33

Defining Key Constraints

CREATE TABLE Officer(
olid INTEGER, name CHAR(50),
birthday DATE, age REAL,
UNIQUE (name, age),
CONSTRAINT OfficerDay UNIQUE (name, birthday),
PRIMARY KEY (oid)

) 7
UNIQUE identifies a key constraint

PRIMARY KEY identifies a key constraint that will
commonly be used to refer to tuples in this relation.

CONSTRAINT (optionally) assigns a name to any constraint.

34

Defining Key Constraints

CREATE TABLE Officer(

&£
xr
TN

) 7

olid INTEGER, name CHAR(50),

birthday DATE, age REAL,

/,,,9 e W T '*“‘”‘i“‘f“’= \

QONSTRAINT OfficerDay)UNIQUE (name, birthday),

sy

PR UTANC® e e v el BN Ko

UNIQUE identifies a key constraint

PRIMARY KEY identifies a key constraint that will
commonly be used to refer to tuples in this relation.

CONSTRAINT (optionally) assigns a name to any constraint.

34

Foreign Key Constraints

® Used when a tuple in one relation needs to
refer to a tuple in a different relation.

® The referenced tuple must exist.

Name

Officers Planets

35

Foreign Key Constraints

CREATE TABLE Visited(
oid INTEGER, pid INTEGER, when DATE,
PRIMARY KEY (oid, pid),
FOREIGN KEY (oid) REFERENCES Officers,
FOREIGN KEY (pid) REFERENCES Planets

) ;7

rank pid name

Officers /Vlsrb Planets
\/

36

O
a

Foreign Key Constraints

CREATE TABLE Commands (<ZEE€>

Subordinate INTEGER,
Commander INTEGER,

O
a

rank

PRIMARY KEY

Officers

(Subordinate, Commander),
Subordinate

Commander

FOREIGN KEY (Subordinate) T
REFERENCES Officers(oid), Commands
FOREIGN KEY (Commander)

REFERENCES Officers(oid)

37

Foreign Key Constraints

Nname

Officers

O
a

rank

CREATE TABLE Officers (

Commander INTEGER,

Subordinate Commander

FOREIGN KEY (Commander)
REFERENCES Officers(oid)

Commands

) ;7

What about the Fleet Admiral (no commander)?
How do we insert the first tuple into Officers!?

38

Enforcing Constraints

® Basic Enforcement

® Reject Inserts/Deletions/Updates that
introduce constraint violations.

® |nsertions: Domain, Key, FK Constraints
® Updates: Domain, Key, FK Constraints

® Deletions: Only FK Constraints

39

Referential Integrity Enforcement

® Foreign Key Constraints are complex
® DBMSes will attempt to rectify violations
rather than reject the violating update.

® How should we react to an inserted tuple that
references a nonexistent foreign key!?

® How should we react to a referenced tuple
being deleted!?

® How should we react to a referenced tuple
being updated?

40

Referential Integrity Enforcement

How should we react to an inserted tuple that
references a nonexistent foreign tuple!?

4]

Referential Integrity Enforcement

How should we react to an inserted tuple that
references a nonexistent foreign tuple!?

REJECT

4]

Referential Integrity Enforcement

How should we react to a referenced tuple
being deleted? (Delete Planet)

42

Referential Integrity Enforcement

How should we react to a referenced tuple
being deleted? (Delete Planet)

| .Delete all referencing tuples (Visited)

42

Referential Integrity Enforcement

How should we react to a referenced tuple
being deleted? (Delete Planet)

| .Delete all referencing tuples (Visited)

2.Disa|low the deletion until there are no
referencing tuples

42

Referential Integrity Enforcement

How should we react to a referenced tuple
being deleted? (Delete Planet)

| .Delete all referencing tuples (Visited)

2.Disa|low the deletion until there are no
referencing tuples

3.Rep|ace the referencing foreign key by
some default value (or NULL).

42

Referential Integrity Enforcement

How should we react to a referenced tuple
being updated? (Planet.pid changes)

43

Referential Integrity Enforcement

How should we react to a referenced tuple
being updated? (Planet.pid changes)

I .Update all referencing tuples (change
Visited.pid)

43

Referential Integrity Enforcement

How should we react to a referenced tuple
being updated? (Planet.pid changes)

I .Update all referencing tuples (change
Visited.pid)

2.Disal|ow the update until there are no
referencing tuples

43

Referential Integrity Enforcement

How should we react to a referenced tuple
being updated? (Planet.pid changes)

I .Update all referencing tuples (change
Visited.pid)

2.Disal|ow the update until there are no
referencing tuples

3 .Replace the referencing foreign key by some
default value (or NULL).

43

Referential Integrity Enforcement

CREATE TABLE Visited(
oid INTEGER, pid INTEGER, when DATE,
PRIMARY KEY (oid, pid),

FOREIGN KEY (pid) REFERENCES Planets
ON DELETE CASCADE
ON UPDATE NO ACTION

) 7

CASCADE Delete or Update Reference

NO ACTION Reject Deletion or Update

SET DEFAULT v ,
SET NULL Replace Reference with v or NULL

44

Constraint Validation

® A Transaction is a batch of DBMS Operations

® SET CONSTRAINT [name] IMMEDIAT]

L]
~e

® Perform constraint checking immediately
after an insert/update/delete.

® SET CONSTRAINT [name] DEFERRED;

® Perform constraint checking at the end of a
transaction (commit time).

45

Table Constraints

CREATE TABLE Officer(
oid INTEGER,
name CHAR(50),
ship CHAR(5)
PRIMARY KEY (oid)
FOREIGN KEY (ship) REFERENCES Ships(sid)
CHECK (‘Enterprise’ <> (SELECT Name
FROM Ship S
WHERE S.sid = Officer.ship))

CHECK clause can contain any conditional expression
If the conditional evaluates to false, the command is rejected

46

Multi- Table Constraints

Keep the number of Planets and Space Stations Over 100

CREATE TABLE SpaceStations (

CHECK (100 > (SELECT COUNT(*) FROM Planets)
+(SELECT COUNT(*) FROM SpaceStations))

)

47

Multi- Table Constraints

Keep the number of Planets and Space Stations Over 100

CREATE ASSERTION SaveTheFederation
CHECK (100 > (SELECT COUNT(*) FROM Planets)
+(SELECT COUNT(*) FROM SpaceStations))

ASSERTION defines a CHECK that is not
associated with any specific table.

47

ety o iicer Nt Nol Pe assiyned

9 Ao mete than one shie

eitito
particpa tes

Y | f\\hf \‘“’5 L T

¢ relatoons C\K’f7 5(/119 Wus“l’ hovee 61{\ (Msf‘

one o ffrcer
‘& F “L'hf'j par i P fes 1y
Z | 1ela Loashl
¢ partreipat.s /

C key (ons #ﬂiﬂ'})

{ﬁltccrﬁ Fem (

SELECTA,B FRoM u't)
WwHERE B=%"
e

