Transactions &
Update Correctness

April 11, 2017

Correctness

 Data Correctness (Constraints)
* Query Correctness (Plan Rewrites)

- Update Correctness (Transactions)

What could go wrong?

* Parallelism: What happens if two updates
modify the same data”

e Maximize use of |O / Minimize Latencies.

* Persistence: What happens it something
breaks during an update?

 \When is my data safe”

)es tﬁmean for a database
o be correct?

What is an Update”

* INSERT INTO ...?7
« UPDATE ... SET ... WHERE ...?

e Non-SQL?

Can we abstract?

Abstract Update Operatons

\[Transaction]/

Transaction

What does it mean for a databas
peration-to be correct?

Transaction Correctness

* Reliability in database transactions guaranteed by ACID

* A - Atomicity (“Do or Do Not, there is nothing like try”) -
usually ensured by logs

e C - Consistency (“Within the framework of law”) - usually
ensured by integrity constraints, validations, etc.

e | - |solation (“Execute in parallel or serially, the result
should be same”) - usually ensured by locks

e D - Durability (“once committed, remain committed”) -
usually ensured at hardware level

Atomicity

* A transaction completes by committing, or
terminates by aborting.

[0gging is used to undo aborted transactions.

 Atomicity: A transaction is (or appears as if it
were) applied in one ‘step’, independent of other
transactions.

* All opsin a transaction commit or abort
together.

|solation

Tl: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

e [ntuitively, T1 transfers $100 from A to B and T2
credits both accounts with interest.

* What are possible interleaving errors?

Example: Schedule

Time 11

A=A+100

B=B-100

OK!

12

A=1.06*A

B=1.06*B

Example: Schedule

Time 11

A=A+100

B=B-100

Not OK!

12

A=1.06*A

B=1.06*B

Example:The DBMS's View

Time 11 12
R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)

Not OK!

What went wrong”

What could go wrong?

Reading uncommitted data
(write-read/WR conflicts; aka “Dirty Reads”)

Tl: R(A),W(A), R(B),W(B),ABRT
T2 : R(A),W(A),CMT,

Unrepeatable Reads
(read-write/RW conflicts)
Tl: R(A), R(A),W(A),CMT
T2: R(A),W(A),CMT,

What could go wrong?

Overwriting Uncommitted Data
(write-write/WW contflicts)

Tl: W(A), W(B),CMT
T2 : W(A),W(B),CMT,

Schedule

An ordering of read and write operations.

Serial Schedule

No interleaving between transactions at all

Serializable Schedule

Guaranteed to produce equivalent output
to a serial schedule

Conflict Equivalence

Possible Solution: Look at read/write, etc... conflicts!

Allow operations to be reordered as long as contlicts
are ordered the same way

Conflict Equivalence: Can reorder one schedule
into another without reordering conflicts.

Contlict Serializability: Conflict Equivalent to a serial
schedule.

Conflict Serializability

e Step 1: Serial Schedules are Always Correct

* Step 2: Schedules with the same operations
and the same conflict ordering are conflict-
eqguivalent.

e Step 3: Schedules contlict-eqguivalent to an
always correct schedule are also correct.

e .. orcontlict serializable

Time

"R(A)

Conflict

VS.

Time

VS.

Equivalence

® | ook at the actual effects

® Can’t determine effects without running
® ook at the conflicts

® Joo strict

® | ook at the possible effects

22

Time 11 12 13
R(A)
W(A)
W(A)
W(A)

Example

Time 11 12 13

Write order irrelevant
R(A) (T3 overwrites either way)

Information Flow

Old State New State

e’ e’
R(..) ﬂ

Information Flow

Not Important Important

Information Flow

View Serializability

Possible Solution: Look at data flow!

View Equivalence: All reads read from the same writer
Final write in a batch comes from the same writer

View Serializability: View Equivalent to a serial schedule.

View EqQuivalence

* For all Reads R

* |f Rreads old state in S1, R reads old state in 52

* If Rreads Ti's write in 51, R reads the the same write in 52
* For all values V being written.

e [f Wisthe last write to V in S1, W is the last write to V in S2

* |f these conditions are satisfied, S1 and S2 are view-equivalent

View Serializability

e Step 1: Serial Schedules are Always Correct

e Step 2: Schedules with the same information
flow are view-eqguivalent.

e Step 3: Schedules view-eqguivalent to an
always correct schedule are also correct.

e .. Orview serializable

Enforcing Serializability

* Conlflict Serializability:

* Does locking enforce conflict serializability”

* View Serializability

* |s view serializability stronger, wea
incomparable to conflict serializab

Ker, or

lity?

* \What do we need to enforce either fully?

How to detect conflict
serializable schedule”

13

R(b) \)F/r
TZ

Precedence Graph

Cycle!
W(d) Not Conflict serializable

Not conflict serializable but
view serializable

N

T1 . T2 Wey)

\ T3 W(y)

Satisfies 3 conditions of
view serializability W(x)

Every view serializable schedule which is not contflict
serializable has blind writes.

How can conflicts be avoided?

Optimistic
Concurrency
Control

Conservative \
Concurrency
Control

Conservative Concurrency
Control

* How can bad schedules be detected?
* What problems does each approach introduce?

* How do we resolve these problems”?

Iwo-Phase Locking

* Phase 1: Acquire (do not release) locks.

* Phase 2: Release (do not acquire) locks.
Why?

Can we do even better?

T1 -

/ W(a)

13

Acyclic -
Conflict Serializable W(b)
2PL exists

Example

Need for shared and
exclusive locks

T T
L(d) : 3
R(d) \ /
L(a) T2

W(a)
IF_%((kk)))) Precedence Graph
L(b) t is conflict Serializable
W(b) but requires granular
R(d) control of locks

Need for shared and
exclusive locks

13

Lock requested

SL(d) §ock rea
R(d) Lockheld S | Yes No
XI_(a) in mode X | No No
W(a)
SL(b) SL(d)
R(b) R-SL(b)
XL(b)
W(b) R-XL(b)
R(d)
R-SL(d)

XL(d) W(d)
R-XL(d)

Reader/Writer (S/X)

* When accessing a DB Entity...
* Table, Row, Column, Cell, etc...
* Before reading: Acquire a Shared (S) lock.
* Any number of transactions can hold S.
* Before writing: Acquire an Exclusive (X) lock.

e |f atransaction holds an X, no other transaction
can hold an S or X.

What do we lock”

Is it safe to allow some transactions to lock tables
while other transactions to lock tuples!?

New Lock Modes

relations @
blocks @ B? @

tuples Q @ @ @@ \contained in

Hierarchical Locks

 Lock Objects Top-Down

e Before acquiring a lock on an object, an xact must
have at least an intention lock on its parent!

 [For example:

 TJo acquire a S on an object, an xact must have an IS,
X on the object’s parent (why not S, SIX, or X7?)

 TJo acquire an X (or SIX) on an object, an xact must
have a SIX, or IX on the object’s parent.

Lock Mode Desired

New Lock Modes

Lock Mode(s) Currently Held By Other Xacts

None IS | X S X
None | valid | valid | valid | valid | valid
IS valid
| X valid
S valid
X valid

Example

* An | lock for a super-element constrains the locks
that the same transaction can obtain at a
subelement.

* |f Ti has locked the parent element P in IS, then Ti
can lock child element C in IS, S.

* |t Ti has locked the parent element P in IX, then Ti
can lock child element C in IS, S, IX, X.

Example

* [1 wants exclusive lock on tuple t2

Example

* [2 wants to request an X lock on tuple t3

T1(IX) ;IX)\
@ T1(IX)§32§2(IX)
T1(X) @ G

T2(X)

Example

T2 wants to request an S lock on block B2

Deadlocks

* Deadlock: A cycle of transactions waiting on each
other's locks

e Problem in 2PL; xact can't release a lock until it
completes

e How do we handle deadlocks?

* Anticipate: Prevent deadlocks betore they
happen.

* Detect: |[dentity deadlock situations and abort
one of the deadlocked xacts.

Deadlock Detection

 Baseline: If a lock request can not be satisfied, the
transaction Is blocked and must wait until the
resource IS avallable.

 (Create a waits-for graph:
e Nodes are transactions

 Edge from T;to Tk if Tiis waiting for Tk to release a
lock.

* Periodically check tor cycles in the graph.

Time

X(B)
W(B)

X(C)

13 14
S (C)
R(C)

X(B)

X (A)

Time 11 12

X(C)

I3 T4
S(C)
R(C)
X (B)

How do we avoid deadlock?

7N\

Avoid React to
Deadlock Deadlock
Situations Situations

Deadlock Prevention

* Ensure that dependencies are monotonic (and
consequently acyclic)

* Assign each transaction a priority based on the
timestamp at which it starts.

 When a transaction fails to acquire a lock:
* Wait it monotonicity would be preserved.

e Kill one transaction otherwise.

Deadlock Prevention

o Policy 1 (Wait-Die): If Ti has a higher priority,
wait for Tk, otherwise T; aborts.

e Policy 2 (Wait-Wound): If Ti has a higher
oriority, Tk aborts, otherwise T; walts.

* Protect fairness by restarting the aborted
transaction with its original timestamp.

