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Announcements
• CSE-662 Wait List created 

• I will force reg up to 10 students for CSE-662 

• Required: B+ in 562 

• If >10 eligible, selection will be based on weighted 
avg of project/exam grades. 

• In-Class Final Exam: May 11 

• If this is a problem, contact me directly.
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What does it mean for a transaction to be committed?



• … is recorded completely (atomicity) 

• … left the database in a stable state (consistency) 

• …’s effects are independent of other xacts (isolation) 

• … will survive failures (durability)
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If commit returns successfully, the transaction…
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Motivation
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Time

Committed Transactions.  
These should be present when the DB restarts.

Uncommitted Transactions.  
These should leave no trace



ACID
• Isolation: Already addressed. 
• Atomicity: Need writes to get flushed in a single step. 

• IOs are only atomic at the page level. 

• Durability: Need to buffer some writes until commit. 
• May need to free up memory for another xact. 

• Consistency: Need to roll back incomplete xacts. 
• May have already paged back to disk.
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Atomicity
• Problem: IOs are only atomic for 1 page. 

• What if we crash in between writes? 

• Solution: Logging (e.g., Journaling Filesystem) 

• Log everything first before you do it.
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append changes to log

time

overwrite file blocks



Durability / Consistency
• Problem: Buffer memory is limited 

• What if we need to ‘page out’ some data? 

• Solution: Use log (or similar) to recover buffer 
• Problem: Commits more expensive 

• Solution: Modify DB in place, use log to ‘undo’ on abort 
• Problem: Aborts more expensive
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append to log

time

‘page out’ data to disk

ABORT

replay log in reverse
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Problem 1: Providing durability under failures.
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Simplified Model 
When a write succeeds, the data is completely written



Problems

• A crash occurs part-way through the write. 

• A crash occurs before buffered data is written.
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Write-Ahead Logging
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A 8

B 12

C 5

D 18

E 16

Before writing to the database, 
first write what you plan to write 

to a log file…

Image copyright: OpenClipart (rg1024)
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Write-Ahead Logging
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A 8

B 12

C 5

D 18

E 16

/ 10
Once the log is safely on disk 
you can write the database
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Write-Ahead Logging
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A 8

B 12

C 5

D 18

E 16

/ 10
Log is append-only,  
so writes are always  

efficient

Image copyright: OpenClipart (rg1024)
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Write-Ahead Logging
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D 18

E 16

/ 10

/ 8

/ 9

…allowing random writes 
to be safely batched

Image copyright: OpenClipart (rg1024)
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Log



Anatomy of a log entry

18

Xact 
ID

Prev 
Entry

Entry 
Type Entry Metadata

Which Xact 
Triggered This 

Entry

Last entry for 
this Xact 

(forms a Linked List)

Write,  
Commit,  

etc…

What was written, 
where, prior value,  

etc…
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Problem 2: Providing rollback.



Single DB Model
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Single DB Model
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Single DB Model
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Single DB Model
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Single DB Model
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Staged DB Model
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Is staging always possible?



• Staging takes up more memory. 

• Merging after-the-fact can be harder. 

• Merging after-the-fact introduces more latency!

29



30

Problem 2: Providing rollback.
for the single database model

^



UNDO Logging
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Log
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Store both the “old” and the “new” 
values of the record being replaced



UNDO Logging
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UNDO Logging
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UNDO Logging
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UNDO Logging
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UNDO Logging
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Problem 3: Providing atomicity.
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Goal: Be able to reconstruct all state at the time 
of the DB’s crash (minus all running xacts)



Transaction Table
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Transaction 24

Transaction 38

Transaction 42

Transaction 56

VALIDATING

COMMITTING

ABORTING

ACTIVE

99

85

87

100

Transaction Status Last Log Entry



Buffer Manager
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24

30

52

57

66

47

n/a

107

87

n/a

Page Status First Log Entry

DIRTY

CLEAN

DIRTY

DIRTY

CLEAN

Data

01011010…

11001101…

10100010…

01001101…

01001011…



DB State
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ARIES Recovery

1. Rebuild Transaction Table 

2. Rebuild Buffer Manager State 

3. ABORT Crashed Transactions
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Transaction Table

• Log all state changes 

• Replay state change log entries
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Step 1: Rebuild Transaction Table



Required Log Entries
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Log every COMMIT 
(replay triggers commit process) 

Log every ABORT 
(replay triggers abort process) 

New message: END 
(replay removes Xact from Xact Table)

What about BEGIN? 
(when does an Xact get added to the Table?)



Transaction Commit
• Write Commit Record to Log 

• All Log records up to the transaction’s LastLSN are 
flushed. 

• Note that Log Flushes are Sequential, 
Synchronous Writes to Disk 

• Commit() returns. 

• Write End record to log.
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Speeding Up Recovery
• Problem: We might need to scan to the very 

beginning of the log to recover the full state of the 
Xact table (& Buffer Manager) 

• Solution: Periodically save (checkpoint) the Xact 
table to the log. 

• Only need to scan the log up to the last 
(successful) checkpoint.
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Checkpointing
• begin_checkpoint record indicates when the 

checkpoint began. 

• Checkpoint covers all log entries before this 
entry. 

• end_checkpoint record contains the current 
transaction table and the dirty page table. 

• Signifies that the checkpoint is now stable.
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• Where do we get the buffered data from? 

• Replay Updates in the Log 

• … from when? 

• The checkpoint? 

• Earlier?

Buffer Manager
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Step 2: Recover Buffered Data

Save Dirty Page Table with Checkpoint



Consistency
• Record previous values with log entries 

• Replay log in reverse (linked list of entries) 

• Which Xacts do we undo? 

• Which log entries do we undo? 

• How far in the log do we need to go?

49

Step 3: Undo incomplete xacts



Compensation Log Records
• Problem: Step 3 is expensive! 

• What if we crash during step 3? 

• Optimization: Log undos as writes as they are 
performed (CLRs). 

• Less repeat computation if we crash during recovery 

• Shifts effort to step 2 (replay) 

• CLRs don’t need to be undone!
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ARIES Crash Recovery
• Start from checkpoint stored in 

master record. 

• Analysis: Rebuild the Xact 
Table 

• Redo: Replay operations from 
all live Xacts (even 
uncommitted ones). 

• Undo: Revert operations from 
all uncommitted/aborted 
Xacts.
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Oldest log record 
of transaction 
active at crash

Smallest recLSN 
in dirty page table 

after Analysis

Last Checkpoint

CRASH

A R U



Recovery Example
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LSN Log
00
05
10
20
30
40
45
50
60

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 Abort

T1 End

update: T2 writes P5

CLR Undo T1 LSN 10

update: T3 writes P1

PrevLSNs

CRASH! Restart!



Analysis
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LSN Log
00
05
10
20
30
40
45
50
60

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 Abort

T1 End

update: T2 writes P5

CLR Undo T1 LSN 10

update: T3 writes P1

Xact Table
T1; <0

DP Table

P5; 10

T2; <0
T1; 10
T2; 20

P3; 20

T3; 50
T2; 60

P1; 50



Redo
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LSN Log
00
05
10
20
30
40
45
50
60

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 Abort

T1 End

update: T2 writes P5

CLR Undo T1 LSN 10

update: T3 writes P1

Xact Table

DP Table

P5; 10
P3; 20

T3; 50
T2; 60

P1; 50



Undo
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LSN Log
00,05

10
20
30

40, 45

50
60

begin_checkpoint, end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 Abort

update: T2 writes P5

CLR Undo T1 LSN 10; T1 End

update: T3 writes P1

Xact Table

ToUndo

60
50

T3; 50
T2; 60

70 CRASH
80

90,95
CLR: Undo T2, LSN 60
CLR: Undo T3, LSN 50; T3 End

CRASH! 20100 CRASH
110 CLR: Undo T2, LSN 20; T2 End


