
Logging & Recovery
April 18, 2017

1

Announcements
• CSE-662 Wait List created

• I will force reg up to 10 students for CSE-662

• Required: B+ in 562

• If >10 eligible, selection will be based on weighted
avg of project/exam grades.

• In-Class Final Exam: May 11

• If this is a problem, contact me directly.

2

3

What does it mean for a transaction to be committed?

• … is recorded completely (atomicity)

• … left the database in a stable state (consistency)

• …’s effects are independent of other xacts (isolation)

• … will survive failures (durability)

4

If commit returns successfully, the transaction…

5

commit
returns

successfully
=

the xact’s
effects

are visible
forever

6

commit
returns

successfully
=

the xact’s
effects

are visible
forever

commit
called but

doesn’t
return

=

the xact’s
effects
may be
visible

Motivation

7

T1

T2

T3

T4

T5

Image copyright: Wikimedia Commons

CRAS
H!

Time

Committed Transactions.
These should be present when the DB restarts.

Uncommitted Transactions.
These should leave no trace

ACID
• Isolation: Already addressed.
• Atomicity: Need writes to get flushed in a single step.

• IOs are only atomic at the page level.

• Durability: Need to buffer some writes until commit.
• May need to free up memory for another xact.

• Consistency: Need to roll back incomplete xacts.
• May have already paged back to disk.

8

Atomicity
• Problem: IOs are only atomic for 1 page.

• What if we crash in between writes?

• Solution: Logging (e.g., Journaling Filesystem)

• Log everything first before you do it.

9

append changes to log

time

overwrite file blocks

Durability / Consistency
• Problem: Buffer memory is limited

• What if we need to ‘page out’ some data?

• Solution: Use log (or similar) to recover buffer
• Problem: Commits more expensive

• Solution: Modify DB in place, use log to ‘undo’ on abort
• Problem: Aborts more expensive

10

append to log

time

‘page out’ data to disk

ABORT

replay log in reverse

11

Problem 1: Providing durability under failures.

12

Simplified Model
When a write succeeds, the data is completely written

Problems

• A crash occurs part-way through the write.

• A crash occurs before buffered data is written.

13

Write-Ahead Logging

14

A 8

B 12

C 5

D 18

E 16

Before writing to the database,
first write what you plan to write

to a log file…

Image copyright: OpenClipart (rg1024)

W(A:10)
Log

Write-Ahead Logging

15

A 8

B 12

C 5

D 18

E 16

/ 10
Once the log is safely on disk
you can write the database

Image copyright: OpenClipart (rg1024)

W(A:10)
Log

Write-Ahead Logging

16

A 8

B 12

C 5

D 18

E 16

/ 10
Log is append-only,
so writes are always

efficient

Image copyright: OpenClipart (rg1024)

W(A:10)
W(C:8)
W(E:9)

Log

Write-Ahead Logging

17

A 8

B 12

C 5

D 18

E 16

/ 10

/ 8

/ 9

…allowing random writes
to be safely batched

Image copyright: OpenClipart (rg1024)

W(A:10)
W(C:8)
W(E:9)

Log

Anatomy of a log entry

18

Xact
ID

Prev
Entry

Entry
Type Entry Metadata

Which Xact
Triggered This

Entry

Last entry for
this Xact

(forms a Linked List)

Write,
Commit,

etc…

What was written,
where, prior value,

etc…

19

Problem 2: Providing rollback.

Single DB Model

20 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

Txn 1 Txn 2

Single DB Model

21 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

/ 20
Txn 1 Txn 2

Single DB Model

22 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

/ 20

19

/

/

Txn 1 Txn 2

Single DB Model

23 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

/ 20

14

19

/

/

Txn 1 Txn 2

Single DB Model

24 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

/ 20

14

19

15/

/

/

Txn 1 Txn 2

A 8

B 12

C 5

D 18

E 16

Staged DB Model

25 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

Txn 1

Txn 2

A 8

B 12

C 5

D 18

E 16

/ 20

14/

Staged DB Model

26 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

15

19

/

/

Txn 1

Txn 2

A 8

B 12

C 5

D 18

E 16

/ 20

14/

Staged DB Model

27 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

E = 19
B = 15
ABORT

Txn 1

Txn 2

28

Is staging always possible?

• Staging takes up more memory.

• Merging after-the-fact can be harder.

• Merging after-the-fact introduces more latency!

29

30

Problem 2: Providing rollback.
for the single database model

^

UNDO Logging

31

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8

/ 9

Log

Image copyright: OpenClipart (rg1024)

Store both the “old” and the “new”
values of the record being replaced

UNDO Logging

32

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8

/ 9

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

UNDO Logging

33

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8

/ 9

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT

UNDO Logging

34

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT

UNDO Logging

35

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT

UNDO Logging

36

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT

37

Problem 3: Providing atomicity.

38

Goal: Be able to reconstruct all state at the time
of the DB’s crash (minus all running xacts)

Transaction Table

39

Transaction 24

Transaction 38

Transaction 42

Transaction 56

VALIDATING

COMMITTING

ABORTING

ACTIVE

99

85

87

100

Transaction Status Last Log Entry

Buffer Manager

40

24

30

52

57

66

47

n/a

107

87

n/a

Page Status First Log Entry

DIRTY

CLEAN

DIRTY

DIRTY

CLEAN

Data

01011010…

11001101…

10100010…

01001101…

01001011…

DB State

41

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8

/ 9

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

On-Disk

On-Disk
(or rebuildable)

In-Memory
Only!

ARIES Recovery

1. Rebuild Transaction Table

2. Rebuild Buffer Manager State

3. ABORT Crashed Transactions

42

Transaction Table

• Log all state changes

• Replay state change log entries

43

Step 1: Rebuild Transaction Table

Required Log Entries

44

Log every COMMIT
(replay triggers commit process)

Log every ABORT
(replay triggers abort process)

New message: END
(replay removes Xact from Xact Table)

What about BEGIN?
(when does an Xact get added to the Table?)

Transaction Commit
• Write Commit Record to Log

• All Log records up to the transaction’s LastLSN are
flushed.

• Note that Log Flushes are Sequential,
Synchronous Writes to Disk

• Commit() returns.

• Write End record to log.

45

Speeding Up Recovery
• Problem: We might need to scan to the very

beginning of the log to recover the full state of the
Xact table (& Buffer Manager)

• Solution: Periodically save (checkpoint) the Xact
table to the log.

• Only need to scan the log up to the last
(successful) checkpoint.

46

Checkpointing
• begin_checkpoint record indicates when the

checkpoint began.

• Checkpoint covers all log entries before this
entry.

• end_checkpoint record contains the current
transaction table and the dirty page table.

• Signifies that the checkpoint is now stable.

47

• Where do we get the buffered data from?

• Replay Updates in the Log

• … from when?

• The checkpoint?

• Earlier?

Buffer Manager

48

Step 2: Recover Buffered Data

Save Dirty Page Table with Checkpoint

Consistency
• Record previous values with log entries

• Replay log in reverse (linked list of entries)

• Which Xacts do we undo?

• Which log entries do we undo?

• How far in the log do we need to go?

49

Step 3: Undo incomplete xacts

Compensation Log Records
• Problem: Step 3 is expensive!

• What if we crash during step 3?

• Optimization: Log undos as writes as they are
performed (CLRs).

• Less repeat computation if we crash during recovery

• Shifts effort to step 2 (replay)

• CLRs don’t need to be undone!

50

ARIES Crash Recovery
• Start from checkpoint stored in

master record.

• Analysis: Rebuild the Xact
Table

• Redo: Replay operations from
all live Xacts (even
uncommitted ones).

• Undo: Revert operations from
all uncommitted/aborted
Xacts.

51

Oldest log record
of transaction
active at crash

Smallest recLSN
in dirty page table

after Analysis

Last Checkpoint

CRASH

A R U

Recovery Example

52

LSN Log
00
05
10
20
30
40
45
50
60

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 Abort

T1 End

update: T2 writes P5

CLR Undo T1 LSN 10

update: T3 writes P1

PrevLSNs

CRASH! Restart!

Analysis

53

LSN Log
00
05
10
20
30
40
45
50
60

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 Abort

T1 End

update: T2 writes P5

CLR Undo T1 LSN 10

update: T3 writes P1

Xact Table
T1; <0

DP Table

P5; 10

T2; <0
T1; 10
T2; 20

P3; 20

T3; 50
T2; 60

P1; 50

Redo

54

LSN Log
00
05
10
20
30
40
45
50
60

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 Abort

T1 End

update: T2 writes P5

CLR Undo T1 LSN 10

update: T3 writes P1

Xact Table

DP Table

P5; 10
P3; 20

T3; 50
T2; 60

P1; 50

Undo

55

LSN Log
00,05

10
20
30

40, 45

50
60

begin_checkpoint, end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 Abort

update: T2 writes P5

CLR Undo T1 LSN 10; T1 End

update: T3 writes P1

Xact Table

ToUndo

60
50

T3; 50
T2; 60

70 CRASH
80

90,95
CLR: Undo T2, LSN 60
CLR: Undo T3, LSN 50; T3 End

CRASH! 20100 CRASH
110 CLR: Undo T2, LSN 20; T2 End

