
Parallel DBs
April 25, 2017

1

Why Scale Up?

2

Scan of 1 PB at 300MB/s (SATA r2 Limit)

~1 Hour

…
(x1000)

~3.5 Seconds

Data Parallelism

3

A A A CBA

Replication Partitioning

Operator Parallelism
• Pipeline Parallelism: A task breaks down into

stages; each machine processes one stage.

• Partition Parallelism: Many machines doing the
same thing to different pieces of data.

4

Sequential
Operation

Sequential
Operation

Sequential
Operation

Sequential
OperationSequential

OperationSequential
Operation

Types of Parallelism

• Both types of parallelism are natural in a
database management system.

5

Sequential
OperationSequential

OperationSequential
Operation

Sequential
OperationSequential

OperationSequential
Operation

Sequential
OperationSequential

OperationSequential
Operation

SELECT SUM(…) FROM Table WHERE …

LOAD SELECT AGG Combine

Sequential
Operation

DBMSes: The First ||
Success Story

• Every major DBMS vendor has a || version.

• Reasons for success:

• Bulk Processing (Partition ||-ism).

• Natural Pipelining in RA plan.

• Users don’t need to think in ||.

6

Types of Speedup

• Speed-up ||-ism

• More resources =
proportionally less time
spent.

• Scale-up ||-ism

• More resources =
proportionally more data
processed.

7

of Nodes

R
es

po
ns

e
T

im
e

of Nodes

T
hr

ou
gh

pu
t

Parallelism Models

8

CPU

Memory

Disk

Parallelism Models

9

CPU

Memory

Disk

…

How do the nodes communicate?

Parallelism Models

10

CPU

Memory

Disk

…

Option 1: “Shared Memory” available to all CPUs

e.g., a Multi-Core/Multi-CPU System

Parallelism Models

11

CPU

Memory

Disk

…

Used by most AMD servers

Option 2: Non-Uniform Memory Access.

Parallelism Models

12

CPU

Memory

Disk

…

Each node interacts with a “disk” on the network.

Option 3: “Shared Disk” available to all CPUs

Parallelism Models

13

CPU

Memory

Disk

…

Examples include MPP, Map/Reduce. Often used as basis for other abstractions.

Option 4: “Shared Nothing” in which all communication is explicit.

Parallelizing

14

OLAP - Parallel Queries

OLTP - Parallel Updates

Parallelizing

15

OLAP - Parallel Queries

OLTP - Parallel Updates

Parallelism & Distribution
• Distribute the Data

• Redundancy

• Faster access

• Parallelize the Computation

• Scale up (compute faster)

• Scale out (bigger data)

16

Operator Parallelism

• General Concept: Break task into individual units
of computation.

• Challenge: How much data does each unit of
computation need?

• Challenge: How much data transfer is needed to
allow the unit of computation?

17

Same challenges arise in Multicore, CUDA programming.

Parallel Data Flow

18

A

No Parallelism

A

Parallel Data Flow

19

A A1 N

N-Way Parallelism

Parallel Data Flow

20

A A1 N

B B1 N

Chaining Parallel Operators

???

Parallel Data Flow

21

A A1 N

B B1 N

One-to-One Data Flow (“Map”)

Parallel Data Flow

22

A A1 N

B B1 N

One-to-One Data Flow

Parallel Data Flow

23

A A1 N

B B1 N

Many-to-Many Data Flow

Extreme 1
All-to-All

All nodes send
all records to

all downstream
nodes

Extreme 2
Partition

Each record
goes to exactly

one downstream
node

Parallel Data Flow

24

A A1 N

BB

Many-to-One Data Flow (“Reduce/Fold”)

Parallel Operators

25

Select Project Union (bag)

What is a logical “unit of computation”?

Is there a data dependency between units?

(1 tuple)

(no)

Parallel Operators

26

Select Project Union (bag)

A A1 N

1/N Tuples 1/N Tuples

Parallel Joins

27

FOR i IN 1 to N
 FOR j IN 1 to K
 JOIN(Block i of R,
 Block j of S)

One Unit of Computation

Partition
Partition

Parallel Joins

28

Block 1 of R
⋈

Block 1 of S

N
 P

ar
tit

io
ns

 o
f R

K Partitions of S

Block 1 of R
⋈

Block K of S

Block N of R
⋈

Block K of S

Block N of R
⋈

Block 1 of S

K

K

N N

Practical Concerns

29

R1⋈S1 R1⋈S2 R2⋈S1 RN⋈SM

R1 R2 RN… S1 S2 SM…

UNION

Where does the computation happen?
How does the data get there?

Distributing the Work

30

S

⋈B

R

Let’s start simple… what can we do with no partitions?

R and S may be any RA expression…

Distributing the Work

31

S

⋈B

R
Node 1

No Parallelism!

Distributing the Work

32

S

⋈B

R
Node 2Node 1

Node 3

Lots of Data Transfer!

All of R
and

All of S
get sent!

Distributing the Work

33

S

⋈B

R
Node 2Node 1

All of R
get sent

Better! We can guess whether R or S is smaller.

Distributing the Work

34

What can we do if R is partitioned?

R2

⋈B

SR1

⋈B

U

Distributing the Work

35

There are lots of partitioning strategies, but this one is interesting….

R2

⋈B

SR1

⋈B

U

Node 2 Node 3Node 1

R2

⋈B

S1R1

⋈B

U

Distributing the Work

36

… it can be used as a model for partitioning S…

Node 2 Node 3Node 1

R2

⋈B

S2R1

⋈B

U

Distributing the Work

37

… it can be used as a model for partitioning S…

Node 2 Node 3Node 1

R2

⋈B

SR1

⋈B

U

Distributing the Work

38

…and neatly captures the data transfer issue.

Node 2 Node 3Node 1

Parallel Joins

39

Hash(R.B)%4

0

1

2

3

√ √ √ √

R ⋈B S: Which Partitions of S Join w/ Bucket 0 of R?

H
as

h(
S.

B)
%

4

0 1 2 3

X X X

√

√

√

Parallel Joins

40

R.B
B<25

25≤B<50

50≤B<75

75≤B

R ⋈R.B < S.B S: Which Partitions of S Can Produce Output?

S.
B

B<25 25≤B<50 50≤B<75 75≤B

√

√

√

√ √ √
√ √

√

√
X

X X

XXX

41

Can we further reduce the amount of data sent?

Sending Hints

42

Node 1 Node 2

Rk Si

Rk ⋈B Si
The naive approach…

Sending Hints

43

Node 1 Node 2

Rk Si

Rk ⋈B Si
The naive approach…

Send me Rk

Sending Hints

44

Node 1 Node 2

Rk Si

Rk ⋈B Si
The naive approach…

Rk

Sending Hints

45

Node 1 Node 2

Rk Si

Rk ⋈B Si
The smarter approach…

 πB()
Si

Sending Hints

46

Node 1 Node 2

Rk Si

Rk ⋈B Si
The smarter approach…

 πB()
Si

 ⋈ πB()
Rk Si

Sending Hints

47

Node 1 Node 2

Rk ⋈B Si
The smarter approach…

<1,A>
<2,B>
<2,C>
<3,D>
<4,E>

<2,X>
<3,Y>
<6,Y>

Sending Hints

48

Node 1 Node 2

Rk ⋈B Si
The smarter approach…

<2,X>Send me rows
with a ‘B’ of

2,3, or 6 <3,Y>
<1,A>
<2,B>
<2,C>
<3,D>
<4,E>

<6,Y>

Sending Hints

49

Node 1 Node 2

Rk ⋈B Si
The smarter approach…

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>Send me rows
with a ‘B’ of

2,3, or 6 <3,Y>

<2,B>
<2,C>
<3,D>

<4,E> This is called a semi-join.

<6,Y>

Sending Hints

50

Now Node 1 sends as little data as possible…

… but Node 2 needs to send a lot of data.

Can we do better?

Sending Hints

51

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 1: Parity Bits

1
0
0

0
1

0
<6,Y>0

Sending Hints

52

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 1: Parity Bits

1
0
0

0
1

0Send me data
with a parity

bit of ‘0’
<6,Y>0

Sending Hints

53

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 1: Parity Bit

1
0
0

0
1

0Send me data
with a parity

bit of ‘0’

<2,B>
<2,C>
<4,E>

Node 1 sending too much is ok!
(Node 2 still needs to compute ⋈B)

<6,Y>0

Problem: One parity bit is too little

Sending Hints

54

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 1: Parity Bit

1
0
0

0
1

0
1

Problem: One parity bit is too little

<3,Y>
<6,Y>0

Sending Hints

55

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 2: Parity Bits

01
10
10

00
11

10
11<3,Y>

<6,Y>10

Send me data
with parity

bits 10 or 11

<2,B>
<2,C>
<3,D>

Problem: Almost as much data as πB

Sending Hints

56

Can we summarize the parity bits?

Bloom Filters

57

Alice
Bob
Carol
Dave

Bloom Filters

58

Bloom
Filter

Alice
Bob
Carol
Dave

Bloom Filters

59

Bloom
Filter

Alice
Bob
Carol
Dave

Is Alice part
of the set?

Is Eve part of
the set?

Is Fred part
of the set?

Yes

No

YesBloom Filter Guarantee
Test definitely returns Yes if the element is in the set

Test usually returns No if the element is not in the set

Bloom Filters

60

A Bloom Filter is a bit vector
M - # of bits in the bit vector

K - # of hash functions

For ONE key (or record):
 For i between 0 and K:
 bitvector[hashi (key) % M] = 1

Each bit vector has ~K bits set

Bloom Filters

61

00101010

01010110

10000110

01001100

Key 1

Key 2

Key 3

Key 4

Filters are combined
by Bitwise-OR

e.g. (Key 1 | Key 2)

= 01111110

How do we test for inclusion?
(Key & Filter) == Key?

(Key 1 & S) = 00101010
(Key 3 & S) = 00000110
(Key 4 & S) = 01001100

X
√

False Positive
√

Sending Hints

62

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>

Sending Hints

63

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>

Send me rows
with a ‘B’ in the

bloom filter
summarizing

the set {2,3,6}

Sending Hints

64

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>

<2,B>
<2,C>
<3,D>
<4,E>

This is called a bloom-join.

Send me rows
with a ‘B’ in the

bloom filter
summarizing

the set {2,3,6}

Parallel Aggregates

65

Algebraic: Bounded-size intermediate state
(Sum, Count, Avg, Min, Max)

Holistic: Unbounded-size intermediate state
(Median, Mode/Top-K Count, Count-Distinct;

Not Distribution-Friendly)

Fan-In Aggregation

66

A A1 N

BSUM

Fan-In Aggregation

67

A1 A2 A3 A4 A5 A6 A7 A8

SUM 8 Messages

Fan-In Aggregation

68

A1 A2 A3 A4 A5 A6 A7 A8

SUM 4 Messages

SUM1 SUM2 SUM3 SUM4

2 Messages
(each)

Fan-In Aggregation

69

A1 A2 A3 A4 A5 A6 A7 A8

SUM 2 Messages

SUM1 SUM2 SUM3 SUM4

2 Messages
(each)

SUM’1 SUM’2

Fan-In Aggregation

70

If Each Node Performs K Units of Work…
(K Messages)

How Many Rounds of Computation Are Needed?

LogK(N)

Fan-In Aggregation
Components

71

Combine(Intermediate1, …, IntermediateN)
= Intermediate

<SUM1, COUNT1> ⊗ … ⊗ <SUMN, COUNTN>
 = <SUM1+…+SUMN, COUNT1+…+COUNTN>

Compute(Intermediate) = Aggregate

Compute(<SUM, COUNT>) = SUM / COUNT

