Parallel DBs

April 25, 2017

Node |
<| A>
<2,B>
<2.C>
<3,D>
<4 E>

Sending Hints

Rk Xg S;

Strategy 3: Bloom Filters

Node 2
<2 X>
<3,Y>
<6,Y>

Sending Hints

Rk Xg S;

Strategy 3: Bloom Filters

Send me rows

Node | iSRG Node 2
<| A> bloom f‘!lt.er <2.X>
summarizing <2 Y>
<2,B> the set {2,3,6} 3,Y
<2,C> <6,Y>
<3,D>

<4 E>

Node |
<| A>
<2,B>
<2.C>
<3,D>
<4 E>

Sending Hints

Rk Xg S;

Strategy 3: Bloom Filters

Send me rows
with a ‘B’ in the

bloom filter
summarizing

the set {2,3,6}

This is called a bloom-join.

4

Node 2
<2 X>
<3,Y>
<6,Y>

Bloom Filter Construction

Empty Filter (Size: m = 20)
00000000000000000000

Use hash functions to pick a fixed number of bits (k = 3)
N1(X) = 13; ha(X) =2; h3(X) =5

Set those bits to 1
00100100000001000000

Bloom Filter LooKup

Filters are combined
00101010 by Bitwise-OR

e.g. (Key 1| Key 2)
= 01101110

Key |
Key2 01000110

Key 3 10000110 How do we test for inclusion?
(Key & Filter) == Key?

Key4 01001100 (Key 1 & S) = 00101010 +/
(Key 3&S) 4 00000110 X
(Key 4 & S) = 01001100 +/
6 False Positive

Bloom Filter Parameters

m = size of the bit vector

Bigger — More space used
Smaller — More false positives

k = # of bits set per element

More Bits — More false positives
Fewer Bits — More false positives
(Need to balance #)

Bloom Filters

How do we pick M and K?

Bloom Filters

Probability that 1 bit is set by 1 hash fn

1/m

Bloom Filters

Probability that 1 bit is not set by 1 hash fn

1- 1/m

10

Bloom Filters

Probability that 1 bit is not set by k hash fns

(1- 1/m)k

11

Bloom Filters

Probability that 1 bit is not set by k hash fns
for n records

(1- 1/m)KN

So for an arbitrary record, what is the probability
that all of its bits will be set?

12

Bloom Filters

Probability that 1 bit is set by k hash tns
for n records

- (1- 1/m)"

13

Bloom Filters

Probability that all k bits are set by k hash tns
for n records

~ (1- (1- 1/m)KMK

N (1_e—kn/m) K

14

Bloom Filters

() Minimal P[collision]

p(collision)

£.75

5 3 ~9.2%

+0.5

10 3 ~0.85%

20 14 ~0.007%

bos—Lff

m/n=5 *?'-;; L 3 21 ~0.000055%

"
vvvvvvvvvvvvvvv

h/n=10 m/n 20 m/n 30

Minimal P[collision] is at k = 0.7 - m/n
15

Bloom Filters

e Minimal P[collision]
p(collision)
£.75
y 5 3 ~9.2%
los 10 8 ~0.85%
20 14 ~0.007%
m/in=5 | ¥/ 4l 3 21 ~0.000055%

"
vvvvvvvvvvvvvvv

h/n=10 m/n 20 m/n 30

5 bits/record, 3 bits set = 10% chance of collision
16

Parallelizing

OLAP - Parallel Queries

OLTP - Parallel Updates

17

Parallelism Models

Option 4: “Shared Nothing” in which all communication is explicit.

CPU U< >$< >U< >
! ! !

Memory

== = ==
— S / —

We’'ll be talking about “shared nothing” for updates.

Other models are easier to work with.
18

Data Parallelism

Replication Partitioning

AA A ‘A B C

(needed for safety)

19

Updates

What can go wrong?

e Non-Serializable Schedules

Tl: W(X)
T2: X)
T2: Y)
T1l: W(Y)

Node |

20

Updates (in Parallel)

What can go wrong?

e Non-Serializable Schedules

Node |

Updates (in Parallel)

What can go wrong?

e Non-Serializable Schedules

 One Compute Node Fails

Node 2

Updates (in Parallel)

What can go wrong?

Non-Serializable Schedules
One Compute Node Falls
A Communication Channel Fails

Messages delivered out-of-order

v B . e v .
>

Node | Node 2

23

Updates (in Parallel)

What can go wrong?
} Classical Xacts

Non-Serializable Schedules

One Compute Node Falls
"Partitions”

A Communication Channel Fails

Messages delivered out-of-order } Consensus

24

Data Parallelism

Replication Partitioning

AA A ‘A B C

(needed for safety)

25

Simple Consensus

Master Slave

Node I Node2
A\ B A\ B

“Safe” ... but Node 1 is a bottleneck.

20

Simpl-ish Consensus

Master for A Master for B
Node | Node 2
A B ‘Al (B!

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

Partitions

Channel Failure

Node |

Node | “ Node 2

From Node 1’s perspective, how are these cases different?
28

They're not!

29

Fallure Recovery

Node Failure

* [he node restarts and resumes serving reqguests.

Channel Failure

* Node 1 and Node 2 regain connectivity.

30

- Partitions
B=5

LN

Node 2

o >

Partitions

Option 1: Node 1 takes over

Node |

32

i
O —

Partitions

Option 1: Node 1 takes over

Node |

Node 2 is down.

| control A & B now!

33

o >

2
0

Partitions

Option 1: Node 1 takes over

Node |

Node 2 is down.

| control A & B now!

o >

2
0

Partitions

Option 1: Node 1 takes over

Node |

T 7

35

Node 2

Partitions

Option 1: Node 1 takes over

36

Partitions

Option 1: Node 1 takes over

Node 2 is down.
| control A & B now!

37

o >

o) N

Partitions

Option 1: Node 1 takes over

o
O1 —

Node 2 is down.

| control A & B now!

Node 2

o >

2
0

Partitions

Option 1: Node 1 takes over

Node |

T 7

INCONSISTENCY!

39

-
|l

Node 2

Partitions

Option 2: Wait

Node |

40

Partitions

Option 2: Wait

Node |

Partitions

Option 2: Wait

Node |

| can’t talk to Node 2
Let me wait!

Partitions

Option 2: Wait

Node |
| can’t talk to Node 2
Let me wait!

Node 2

Partitions

Option 2: Wait

Node | Node 2

| can’t talk to Node 2
Let me wait!

Partitions

Option 2: Wait

— —4%

Node | Node 2

Partitions

Option 2: Wait

Node |

| can’t talk to Node 2
Let me wait!

Partitions

Option 2: Wait

Node |

| can’t talk to Node 2
Let me wait!

Partitions

Option 1: Assume Node Failure

All data is available... but at risk of inconsistency.

Option 2: Assume Connection Failure

All data is consistent... but unavailable

48

F O duwWeg<<2Z 0 W

Traditionally: Pick any 2

49

Simpl-ish Consensus

Master for A Master for B
Node | Node 2
A B ‘Al (B!

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.
o0

Simpl-ish Consensus

Master for A Master for B

Withdraw $1000
from A

Deposit $1000

What if we need to coordinate between A & B?ﬂ

51

Naive Commit

Coordinator Node | Node 2
W (A,B) —

Safe to COWACK ACK

Safe to Commit?

52

That packet sure does look tasty...

53

Naive Commit

Coordinator Node | Node 2

Is it safe to abort?

54

Naive Commit

Coordinator Node | Node 2
W (A,B) —

_—ACK ACK

What now?

55

Naive Commit

Coordinator Node | Node 2
W(A)

How do we know Node 2 even still exists?

56

2-Phase Commit

® Ohne site selected as a coordinator.
® |nitiates the 2-phase commit process.

® Remaining sites are subordinates.

® Only one coordinator per xact.

® Different xacts may have different coordinators.

57

2-Phase Commit

® Coordinator sends ‘prepare’ to each subordinate.

® When subordinate receives ‘prepare’, it makes a
final decision: Commit or Abort.

® The transaction is treated as if it committed
for conflict detection.

® The subordinate logs ‘prepare’, or ‘abort’

® The subordinate responds ‘yes’, or ‘no’

58

2-Phase Commit

® |f coordinator receives ‘no’ from any
subordinate, it tells subordinates to ‘abort’.

® (Can treat timeouts as ‘no’s

® |[f coordinator receives ‘yes’ from all
subordinates, it tells subordinates to ‘commit

’

® |n both cases, the coordinator first logs the
decision and forces the log to local storage.

59

2-Phase Commit

® Subordinates perform abort or commit as
appropriate (logging as in single-site ARIES)

® Subordinates ‘ack’nowledge the coordinator.

® The transaction is complete once the
coordinator receives all ‘acks’.

60

2PC for Replication

® Optimization:We don’t need 100% responses
from replicas.

® Replicas can be reconstructed from others.
® Asserting ‘preparedness’ can be difficult.
® How much failure tolerance do we want!

® We can tolerate N failures by waiting for N+
responses during the ‘prepare’ phase.

61

Recovery

How do we recover from a (transient)
coordinator crash in Phase |?

What information/communication state is lost?
Can it be recovered?

(Does it need to be?)

62

Recovery

How do we recover from a (transient)
coordinator crash in Phase 2!

What information/communication state is lost?

Can it be recovered?

63

Recovery

How do we recover from a (transient)
subordinate crash in Phase |?

What information/communication state is lost?

Can it be recovered?

64

Recovery

How do we recover from a (transient)
subordinate crash in Phase 2!

What information/communication state is lost?

Can it be recovered?

65

