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Sending Hints

4

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>

<2,B>
<2,C>
<3,D>
<4,E>

This is called a bloom-join.

Send me rows 
with a ‘B’ in the 

bloom filter
summarizing 

the set {2,3,6}



Bloom Filter Construction
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00000000000000000000
Empty Filter (Size: m = 20)

Use hash functions to pick a fixed number of bits (k = 3)
h1(X) = 13;   h2(X) = 2;   h3(X) = 5

Set those bits to 1
00100100000001000000



Bloom Filter Lookup
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00101010

01000110

10000110

01001100

Key 1

Key 2

Key 3

Key 4

Filters are combined 
by Bitwise-OR

e.g. (Key 1 |  Key 2)

= 01101110

How do we test for inclusion?
(Key & Filter) == Key?

(Key 1 & S) = 00101010
(Key 3 & S) = 00000110
(Key 4 & S) = 01001100

X
√

False Positive
√



Bloom Filter Parameters
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m = size of the bit vector

k = # of bits set per element
More Bits – More false positives 
Fewer Bits – More false positives 

(Need to balance #)

Bigger – More space used 
Smaller – More false positives



Bloom Filters
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How do we pick M and K?



Bloom Filters
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Probability that 1 bit is set by 1 hash fn

1/m



Bloom Filters
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Probability that 1 bit is not set by 1 hash fn

1/m1 -



Bloom Filters
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Probability that 1 bit is not set by k hash fns

1/m1 -( )k



Bloom Filters
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Probability that 1 bit is not set by k hash fns 
for n records

1/m1 -( )k n

So for an arbitrary record, what is the probability 
that all of its bits will be set?



Bloom Filters
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Probability that 1 bit is set by k hash fns 
for n records

1/m1 -( )k n1 -



Bloom Filters
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Probability that all k bits are set by k hash fns 
for n records

1/m1 -( )k n1 -( ) k≈

-kn/m(1- e         )≈ k



Bloom Filters
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Minimal P[collision]

m/n = 10

m/n = 5

m/n = 20 m/n = 30

Minimal P[collision] is at k ≈ 0.7 ∙ m/n

m/n k p(collision)

5 3 ~9.2%

10 8 ~0.85%

20 14 ~0.007%

30 21 ~0.000055%



Bloom Filters
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Minimal P[collision]

m/n = 10

m/n = 5

m/n = 20 m/n = 30

5 bits/record, 3 bits set = 10% chance of collision

m/n k p(collision)

5 3 ~9.2%

10 8 ~0.85%

20 14 ~0.007%

30 21 ~0.000055%



Parallelizing

17

OLAP - Parallel Queries

OLTP - Parallel Updates



Parallelism Models
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CPU

Memory

Disk

…

We’ll be talking about “shared nothing” for updates.  
Other models are easier to work with.

Option 4: “Shared Nothing” in which all communication is explicit.



Data Parallelism
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A A A CBA

Replication Partitioning

(needed for safety)



Updates
• Non-Serializable Schedules 

• One Compute Node Fails 

• A Communication Channel Fails 

• Messages are 
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What can go wrong?

Node 1

T1: W(X)
T2: W(X)
T2: W(Y)
T1: W(Y)X



Updates (in Parallel)
• Non-Serializable Schedules 

• One Compute Node Fails 

• A Communication Channel Fails 

• Messages delivered out-of-order

21
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Node 1 Node 2
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Updates (in Parallel)
• Non-Serializable Schedules 

• One Compute Node Fails 

• A Communication Channel Fails 

• Messages delivered out-of-order
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What can go wrong?

Node 1 Node 2

XY YX



Updates (in Parallel)
• Non-Serializable Schedules 

• One Compute Node Fails 

• A Communication Channel Fails 

• Messages delivered out-of-order
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What can go wrong?
Classical Xacts

“Partitions”

Consensus



Data Parallelism
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A A A CBA

Replication Partitioning

(needed for safety)



Simple Consensus

26

A A BB

Node 1 Node 2

Master Slave

YX YX

“Safe” … but Node 1 is a bottleneck.



Simpl-ish Consensus
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A A
Node 1 Node 2

Master for A Master for B

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

BB

Y

X

Y

X



Partitions
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Node 1 Node 2

Node 1
From Node 1’s perspective, how are these cases different?

Channel Failure

Node Failure

Node 2
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They’re not!



Failure Recovery

• Node Failure 

• The node restarts and resumes serving requests. 

• Channel Failure 

• Node 1 and Node 2 regain connectivity.
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Partitions
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Node 1 Node 2

A=1 
B=5

A=1 
B=5



Partitions
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Node 1

Option 1: Node 1 takes over

Node 2

A=1 
B=5



Partitions
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Node 1

Option 1: Node 1 takes over

Node 2

Node 2 is down.  
I control A & B now!

A=1 
B=5



Partitions
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Node 1

Option 1: Node 1 takes over

Node 2

Node 2 is down.  
I control A & B now!

A = 2
B = 6

A=2 
B=6



Partitions
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Node 1

Option 1: Node 1 takes over

Node 2

A=2 
B=6
A=2 
B=6



Partitions
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Node 1

Option 1: Node 1 takes over

Node 2

A=1 
B=5

A=1 
B=5



Partitions
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Node 1

Option 1: Node 1 takes over

Node 2

A=1 
B=5

A=1 
B=5

Node 2 is down.  
I control A & B now!



Partitions
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Node 1

Option 1: Node 1 takes over

Node 2

A=2 
B=6

A=1 
B=5

Node 2 is down.  
I control A & B now!

A = 2
B = 6



Partitions
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Node 1

Option 1: Node 1 takes over

Node 2

A=2 
B=6

A=1 
B=5

INCONSISTENCY!



Partitions
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Node 1 Node 2

Option 2: Wait



Partitions
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Node 1 Node 2

A = 2
B = 6

Option 2: Wait



Partitions
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Node 1 Node 2

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Option 2: Wait



Partitions
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Node 1 Node 2

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Option 2: Wait



Partitions
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Node 1 Node 2

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

All set

Option 2: Wait



Partitions
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Node 1 Node 2

Option 2: Wait



Partitions
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Node 1

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Option 2: Wait



Partitions
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Node 1

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Still waiting…

Option 2: Wait



Partitions
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Option 1: Assume Node Failure 

All data is available… but at risk of inconsistency.

Option 2: Assume Connection Failure 

All data is consistent… but unavailable
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Simpl-ish Consensus
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A A
Node 1 Node 2

Master for A Master for B

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

BB

Y

X

Y

X



Simpl-ish Consensus
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A A
Node 1 Node 2

Master for A Master for B

What if we need to coordinate between A & B?

BB

Y

X

Y

X Withdraw $1000 
from A

Deposit $1000
into B



Naive Commit
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Node 1 Node 2Coordinator

ACK ACK

Safe to Commit ?

Safe to Commit?

W(A,B)
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That packet sure does look tasty…



Naive Commit
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Node 1 Node 2Coordinator

W(A,B)

ACK

Is it safe to abort?



Naive Commit
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Node 1 Node 2Coordinator

ACK ACK

What now? 

W(A,B)



Naive Commit
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Node 1 Node 2Coordinator

W(A)

ACK

How do we know Node 2 even still exists?



2-Phase Commit

• One site selected as a coordinator.

• Initiates the 2-phase commit process.

• Remaining sites are subordinates.

• Only one coordinator per xact.

• Different xacts may have different coordinators.
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2-Phase Commit

• Coordinator sends ‘prepare’ to each subordinate.

• When subordinate receives ‘prepare’, it makes a 
final decision: Commit or Abort.

• The transaction is treated as if it committed 
for conflict detection.

• The subordinate logs ‘prepare’, or ‘abort’

• The subordinate responds ‘yes’, or ‘no’
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2-Phase Commit

• If coordinator receives ‘no’ from any 
subordinate, it tells subordinates to ‘abort’.

• Can treat timeouts as ‘no’s 

• If coordinator receives ‘yes’ from all 
subordinates, it tells subordinates to ‘commit’

• In both cases, the coordinator first logs the 
decision and forces the log to local storage.
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2-Phase Commit

• Subordinates perform abort or commit as 
appropriate (logging as in single-site ARIES)

• Subordinates ‘ack’nowledge the coordinator.

• The transaction is complete once the 
coordinator receives all ‘acks’.
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2PC for Replication

• Optimization: We don’t need 100% responses 
from replicas.

• Replicas can be reconstructed from others.

• Asserting ‘preparedness’ can be difficult.

• How much failure tolerance do we want?

• We can tolerate N failures by waiting for N+1 
responses during the ‘prepare’ phase.
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Recovery
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How do we recover from a (transient)
coordinator crash in Phase 1?

What information/communication state is lost?

Can it be recovered?

(Does it need to be?)



Recovery
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How do we recover from a (transient)
coordinator crash in Phase 2?

What information/communication state is lost?

Can it be recovered?



Recovery
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How do we recover from a (transient)
subordinate crash in Phase 1?

What information/communication state is lost?

Can it be recovered?



Recovery
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How do we recover from a (transient)
subordinate crash in Phase 2?

What information/communication state is lost?

Can it be recovered?


