
CSE Midterm - Spring 2017 Solutions

March 28, 2017

Question Points Possible Points Earned

A.1 10
A.2 10
A.3 10

A 30

B.1 10
B.2 25
B.3 10
B.4 5

B 50

C 20

Total 100

UBIT:

Extended Relational Algebra Operator Reference

Select σc(R) c : The selection condition
Extended Project πe1,e2,...(R) ei : The column or expression to project

Product R1 ×R2

Join R1 ./c R2 c : the join condition
Distinct δ(R)
Group γgb1,gb2,...,AGG(e1),...(R) gbi : group by columns, ei : expression

Set Difference R1 −R2

Union R1 ∪R2

Sort τA A one or more attributes to sort on

Relational Algebra Equivalences

Rule Notes
σC1∧C2

(R) ≡ σC1
(σC2

(R))
σC1∨C2

(R) ≡ σC1
(R) ∪ σC2

(R) Note, this is only true for set, not bag union
σC(R× S) ≡ R ./C S
σC(R× S) ≡ σC(R)× S If C references only R’s attributes, also works for joins
πA(πA∪B(R)) ≡ πA(R)
σC(πA(R)) ≡ πA(σC(R)) If A contains all of the attributes referenced by C

πA∪B(R× S) ≡ πA(R)× πB(S) Where A (resp., B) contains attributes in R (resp., S)
R× (S × T) ≡ (R× S)× T Also works for joins

R× S ≡ S ×R Also works for joins
R ∪ (S ∪ T) ≡ (R ∪ S) ∪ T Also works for intersection and bag-union

R ∪ S ≡ S ∪R Also works for intersections and bag-union
σC(R ∪ S) ≡ σC(R) ∪ σC(S) Also works for intersections and bag-union
πA(R ∪ S) ≡ πA(R) ∪ πA(S) Also works for intersections and bag-union

σC(γA,AGG(R)) ≡ γA,AGG(σC(R)) If A contains all of the attributes referenced by C

2 of 7

UBIT:

Question A: Relational Algebra
(30 points)

Consider the following database schema, listing information for a supply-chain com-
pany. The CITY table lists information about cities with the company’s warehouses,
while the ROUTES table lists established routes between warehouses. Listed routes form
a directed-acyclic graph (i.e., following edges will always lead you to a leaf). For each
query listed, provide a relational algebra tree.

CREATE TABLE WAREHOUSE(id int , name string , capacity int);

CREATE TABLE ROUTES(origin_warehouse int , dest_warehouse int , volume float);

1. (10 pt) Find the total shipping volume of all routes originating in a warehouse with a smaller
capacity than the destination.

γSUM(volume)(σorigin.capacity<dest.capacity((R ./origin W) ./dest W))

2. (10 pt) Find the name of every warehouse that receives shipments exclusively from ware-
houses with a smaller capacity.

A := δ(πorigin.id(σorigin.capacity≥dest.capacity((R ./origin W) ./dest W)))

B := (πid(W)−A)

πname(B ./id W)

Partial credit was awarded for answers that returned the names of warehouses that received
any shipments from a warehouse with a smaller capacity (as opposed to exclusively from
such warehouses).

3. (10 pt) A spanning tree for a directed acyclic graph is a subset of the edges such that every
node has exactly one parent. Although many graph algorithms can not be expressed in RA,
this one can. Compute a spanning tree for ROUTES, with source as the parent.

To construct a spanning tree from any DAG, you need to pick one (arbitrary) parent for
each node. In this case, a simple approach is to use MIN or MAX, although many relational
databases also support FIRST, LAST, and NTH aggregates.

γdestwarehouse,MIN(originwarehouse)(ROUTES)

Answers fell into 4 categories. Several students proposed the exact right answer as above (or
something relatively close). Several students proposed solutions based on extending RA with
some form of recursion. Though RA does not support recursion, this solution earned 8 points.
Anyone who recognized and clearly described the need for some sort of aggregate received 5
points.

3 of 7

UBIT:

Question B: Query Optimization
(50 points)

Questions in this section ask you optimize the following query:

Customer (cust)

Restaurant (rest)

Reservation (resv)

πcust.name, num

⨉
⨉

σresv.cust_id = cust.id AND resv.rest_id = rest.id AND cust.city = ’Buffalo’

Ɣresv.cust_id, resv.rest_id, count(*) AS num

1. (10 pt) As we discussed in class, the first stage of optimizing a query takes place entirely
in relational-algebra land. The optimizer picks out a set of candidate expressions that could,
under some assumptions, generate an optimal plan. Using only the rewrite rules listed at the
front of this exam, show how of any one of the potentially optimal expressions is derived.

πname,num(σcust∧rest∧city((γ(Reservation)× Customer)×Restaurant)) (1)

πname,num(σrest((σcust∧city(γ(Reservation)× Customer))×Restaurant)) (2)

πname,num((σcust∧city(γ(Reservation)× Customer)) ./rest Restaurant) (3)

πname,num((σcust(γ(Reservation)× σcity(Customer))) ./rest Restaurant) (4)

πname,num((γ(Reservation) ./cust σcity(Customer)) ./rest Restaurant) (5)

A few other optimizations were also possible. Several students applied projection pushdown
and/or join reordering at this stage, both of which can produce more efficient plans under
certain conditions. Reasons for points being taken off include:

• Not converting σ(R× S)s into joins: -1 pt

• Pulling up aggregates (Not a correct optimization in general, and not one of the allowed
rewrites): -1pt

• Non-recursive optimization (e.g., only applying rewrites to the top-level): -5 pt

• Only answer, no justification: -6 pt

4 of 7

UBIT:

2. (25 pt) The database has gathered the statistics below,

Table # of Rows Primary Index
Reservation 20,000,000 〈cust id, rest id〉
Customer 1,000,000 〈id〉

Restaurant 10,000 〈id〉

Field # of Distinct Values
resv.rest id 10,000
resv.cust id 1,000,000

cust.id 1,000,000
cust.city 20

cust.name 800,000
rest.id 10,000

There are no secondary indexes built and no other information is available to the optimizer.
Assume that enough memory is available for slightly more than 5,000 tuples (say 5,100 tuples),
independent of relation. Draw the optimal query evaluation plan according to these statistics.
Be sure to indicate which algorithm is used for which (combination of) operator(s)!

A number of plans were possible. Of all of the possible join orders, (Reservation ./ Customer) ./
Restaurant produces the fewest intermediate tuples. Because there is no index on Customer.city,
a full table scan is required for this table. We were looking for three algorithm choices: one
for the aggregate on reservation and two for the two joins:

(a) Aggregate of Reservation: The optimal plan is one in which the optimizer identifies
that Reservation already has a primary index on the two group-by columns, and is thus
already sorted in the right order. Thus, the aggregate may be computed in a single scan.

(b) Join with Customer: The optimal plan is one in which the optimizer identifies that
Reservation and Customer both have primary indexes that start with customer id, mak-
ing it possible to perform sort/merge join (except without needing to sort). Partial
credit was also given for 2-pass hash or index-nested loop join. Block-nested loop and
nested loop joins are entirely inappropriate here, as they have N2 performance on an
equality-join. 1-pass Hash is entirely inappropriate here, as it requires more memory
than is available.

(c) Join with Restaurant: The optimal plan (depending on your assumptions about the
cost of an index lookup) was either an Index-Nested-Loop or a 2-pass hash join. An
index already exists on restaurant, making INLJ feasible. Conversely, we can expect 106

tuples from the earlier pipeline stages, and we will need to do exactly that many index
lookups. Depending on your assumptions about how much this costs, it may be safer to
do a 2-pass hash join. Sort-merge join is inappropriate as it would require sorting 106

tuples. As before, block-nested loop, nested loop, and 1-pass hash are all inappropriate
here.

• 10 points for recognizing that the Reservation and Customer tables are sorted and using
SMJ

• 10 points for using a valid join algorithm for R ./ Restaurant

• 5 Points for using a constant time γ

3. (10 pt) What is the plan’s total IO cost in terms of total number of tuples read or written?

5 of 7

UBIT:

(a) All tuples in Reservation are required (2 · 107 tuples read)

(b) To estimate |γresv| we would normally use the domains of the two group-by columns:

|γresv|1 = |rest id| · |cust id| = 104 · 106 = 1010

However, there is also a hard upper bound based in the input to the group-by: |γresv| =
|resv| = 2 · 107. The latter is lower, so clearly not all of the groups will be populated.
However, the aggregate will not need to perform any IOs.

(c) All tuples in Cust are required (106 tuples read)

(d) We can estimate selectivity on the customer table is 1
20 based on the number of tuples

in it.

(e) Sort-free SMJ does not require new IOs.

(f) The final join, implemented as a 2-pass hash join requires us to write out all of the tuples
on both sides, then read them back in in groups. For the right-hand side, this is the
entire Restaurant table (104 tuples written, 104 tuples read). For the left hand side, we
need to estimate the number of tuples resulting from the join. Naively, we can do this
by using the lower number of distinct values in the join attributes. Both tables have
106 values of the customer id attribute, so regardless of which direction we go in, we’ll
get 2 · 107 tuples in the output (this number both written, and then read). Since the
statistics indicate that cust.id is unique, we can be a little more clever and observe that
the selection predicate is going to filter out all but 5% of these unique values, leading to
1 · 106 tuples in the intermediate result.

• Full credit was given as long as the answer correctly analyzes the evaluation plan in part
2.

• Partial credit was given if the analysis was almost correct

4. (5 pt) As suggested by the value statistics, rest.id is a key (each value is unique). Consid-
ering this, and the fact that no attribute of restaurants is used in the query, why is it unsafe
to simply drop the join with restaurants?

If rest.id is a foreign key, then it’s safe to drop the join with restaurants. If not, then there
would be some rest.id not in the restaurant table.

6 of 7

UBIT:

Question C: Algorithms
(20 points)

Using Big-O notation, what is the working set size of each of the following algo-
rithms/operators in terms of number of tuples. Be sure to explicitly indicate any
shorthands, assumptions, or unspecified parameters that you use.

Algorithm Rel. Alg. Working set size

1 Projection (Map) πAR O(1)

2 Selection (Filter) σφR O(1)

3 Union R ∪ S O(1)

4 Nested Loop Join R ./φ S O(1)

5 Block-Nested Loop Join R ./φ S O(|B|)

6 1-Pass Hash Join R ./A S O(|R|) or O(|S|)

7 Sort-Merge Join (input sorted on A) R ./A S O(1)

8 2-Pass Sort τAR O(|B|)

9 Group-By Aggregate (unsorted input) γA,SUM(B) O(|A|) or O(|H|)

10 Group-By Aggregate (input sorted on A) γA,SUM(B) O(1)

Notes above use:

• |B|: Block Size

• |H|: Hash Bucket Size

• |R|, |S|: Size of R, S

• |A|: Size of the domain of attribute A

7 of 7

