Project Seeds

Languages & Runtimes for Big Data

Reminder

« Homework 1: Database Cracking
* Read the paper (linked from the course page)
e Submit 2 discussion points (strength and weakness
of the work) or make a counterargument to someone

else’s points via Disqus

e |f you're uncomfortable using Disqus, email me (with
[CSE-662] in the subject line)

* Disqus thread started for group formation

Types of Projects

Data Quality
Query Processing
Index Structures

Pocket Scale Data

Checkpoint Expectations

e Checkpoint 1: Project Description (Due by 11:59 PM Sept. 20)
« What is the specific challenge that you will solve”

 What metrics will you use to evaluate success?
 What deliverables will you produce?

e Checkpoint 2: Progress Report (Due by 11:59 PM Oct. 22)
* What challenges have you overcome so far?

* How does your existing work compare to other, similar approaches?
 How have your goals changed from checkpoint 17?
* What challenges remain for you to overcome?

e Checkpoint 3: Final Report (Due by 11:59 PM Dec. 3)
* What specific challenge did you solve?

 How does your final solution compare to other, similar approaches?

Deferred Constraint-Based
Data Valigation

Constraint Constraint Violations
Temperature Changes at < 5° C/Hr [<12:45, 20°C>, <13:45, 30°C> }
One Unique SS# Per Person { <12345, “Alice”’>, <12345, “Bob”> }
Weight Variance < 20Ib { <"Jan”, 160lb>, <“Feb”, 180Ib>, <*Mar”, 220Ib> }
-
-

—

Deferred Constraint-Based
Data Valigation

Query Answer
Average Temperature Over the Past Week 25°C
What's Bob's SS#7 12345
What was the weight in Feb? 180 Ib

Constraint Violations

{ <12:45,20°C>, <13:45,30°C> | mmmmedp ~ -

{ <12345, “Alice”>, <12345, “Bob™> } B _
{ <*Jan”, 160Ib>, <“Feb”, 180lb>, <*Mar”, 220Ib> }

Deferred Constraint-Based
Data Valigation

Query Answer
Average Temperature Over the Past Week 25°C = 3°
What's Bob's SS#7 12345 or ?

What was the weight in Feb? 180 Ib + 40 Ib

N

Constraint Repairs —» ~ ~

“—

“— e’

Deferred Constraint-Based
Data Valigation

 Language: SQL + (Scala or Java)

* First Steps: Read up on constraint repair and
triggers.

 Expected Outcomes: | give you a query, you tell
me which rows/cells are complicit in a constraint

violation.

Query Sampling Optimizer

Uncertain Data
< Spot, { Alive | Dead | >

N

SELECT COUNT (*) FROM Cats
WHERE State = ‘Alive’;

Query Sampling Optimizer

Uncertain Data
World 1: < Spot, Alive >
World 2: < Spot, Dead >

N

SELECT COUNT (*) FROM Cats
WHERE State = ‘Alive’;

WORLD | COUNT

1
2

1

|
| 0

Query Samphng Optimizer

WORLD Cat state
_______ _|__________|_________
1 | Spot | Alive
2 | Spot | Dead

N

SELECT COUNT (*) FROM Cats
WHERE State = ‘Alive!’
GROUP BY WORLD; \

WORLD | COUNT
_______ _|_________
1 | 1
2 | 0

Query Sampling Optimizer

1 cat = 2 worlds
2 cats = 4 worlds

10 cats = 1024 worlds

n cats = 2N worlds

Query Sampling Optimizer

Idea: Sample from the worlds

Query Sampling Optimizer

WORLD | Cat | State
_______ _|__________|_________
Interleaved: 1 | Spot | Alive
% | Spot | Dead
Cat | State
Tuple Bundle: -————-—-—- tmmm
Spot | [Alive, Dead]
or
Cat | State 1 | State 2
________ _|___________|___________
Spot | Alive | Dead

Query Sampling Optimizer

SELECT COUNT (*) FROM Cats
Interleaved: WHERE State = ‘Alive’
GROUP BY WORLD;

SELECT
SUM (
Tuple Bundie: CASE WHEN State 1 = ‘Alive’ THEN 1
ELSE 0 END) AS COUNT 1,
SUM (
CASE WHEN State 2 = ‘Alive’ THEN 1

ELSE O END) AS COUNT_Z
FROM Cats;

d

300 5 Min Timeout 5 Min Timeout
Bl Bundle
T_g 250} |HEl Sparse
-
S 200}
4
c 150}
V4
(©
— 100}
)
&
I 50f
0

Query Sampling Optimizer

 Language: RA + Scala
* First Steps: Install Mimir and get it to compile

 Expected Outcomes: | give you a query and you
give me a sampling-based execution plan for it.

Explaining Offset-Outliers

SELECT Neighborhood, Week, COUNT (*)
FROM PoliceComplailnts

— \ ' /
WHERE Type Noilse Why so many?

Neighborhood
Black Rock 1 (53)
Black Rock 2 0
Amherst 1 S
Amherst 2 ®
Elmwood 1 10

Elmwood 2 9

Explaining Offset-Outliers

e.qg., There were fewer noise complaints
that week everywhere else.

v\

of noise complaints Black Rock, Week 1
in all of Buftalo is stable IS counterbalanced by
a dip elsewhere

“What’s Normal” —» “How’s this different
from normal”

Explaining Offset-Outliers

“What’s Normal”

For all X:
f(X) =
SELECT g, COUNT (%*)
FROM Data
WHERE c = X
GROUP BY g

Explaining Offset-Outliers

“What’s Normal”

For all Cities C:

1(C) =
SELECT week, COUNT (*)
FROM NolseComplaints
WHERE city = C
GROUP BY week

Explaining Offset-Outliers

“What’s Normal”

For all Cities C:
f(C) =
SELECT AVG (count) FROM (
SELECT week, COUNT (*) AS count

FROM ..
) ;

SELECT week, COUNT (%)
FROM NoiseComplaints

WHERE city = C
GROUP BY week

Explaining Offset-Outliers

SELECT neighborhood,
FROM NoiseComplaints

GROUP BY week

Neighborhood

city,

week, COUNT (*)

Why so many?

Black Rock
Black Rock
Amherst
Amherst
Elmwood

Elmwood

BUF
BUF
BUF
BUF
BUF
BUF

Explaining Offset-Outliers

Question 1: Is the overall situation “normal”?
(Are there more noise complaints than usual in Buffalo?)
Question 2: Is the cell abnormally high (or low)?

(Are there more noise complaints in Black Rock
compared to the average week?)

Question 3: \What counterbalances the cell?

(Are there other neighborhoods where
noise complaints dropped that week?)

Explaining Offset-Outliers

* Language: SQL + [Your Choice]

* First Steps: \Write a piece of code to execute
aggregate SQL queries with varying sets of group-
by terms.

 Expected Outcomes: | give you a dataset and a
set of stability constraints on that data, and you
give me a set of explanations for outliers.

Humidity %

Physical Layouts for Forked Data

@ Buffalo Humidity @ Spide
100.00

90.00

80.00

70.00

60.00

500

40.00

30.00
20.00

10.00 1

0.00 : 3
Sat Jul 29, 15:50 TRy Aug 03, 18740 Tue Aug 08, 09:46 Sun Aug 13, 00:53 Thu Aug 17, 16:

Tue Aug 01, 11:06 y Sun Aug 06, 02:13 Thu Aug 10, 17:20 TimTéJe Aug 15, 08:26

Physical Layouts for Forked Data

Just because something is an outlier doesn’'t mean
that the data should be removed.

... but now you need to keep track of
multiple “versions” of the data.

Physical Layouts for Forked Data

Query A: Lookup key K in version V
Query B: Lookup keys in range [K1,Kz] in version V
Query C: Find all versions with keys in range [K1,K2]

Query D: Find all keys in range [K1,K2]
with identical values in all versions

Query E: Find all keys in range [K1,K2]
with at least one version-based difference.

Physical Layouts for Forked Data

Naive 1: Version Tuples Naive 2: Version Tables
(or indexes)

Faster for querying
one version (A, B)

Faster for querying
all versions (C, D, E)

Physical Layouts for Forked Data

 Language: [Your Choice — C/C++ Suggested]

* First Steps: Implement a simple B+ tree in your
language of choice.

 Expected Outcomes: A data store that supports
efficient point/range queries across branches,
forking, and both batch and single-branch
updates.

Adaptive Multidimensional

Rl R4
R2 . R9
R10
RE
R12
R2
R6 R16
R15

image credit: wikipedia

+ Indexing

RS Ri13
R14
R7 [R18
R17
R19
Rl R2 |
R3| R4 RS
- . ' -
R& R9 R10 R1l R12 R12 R14

R15 R16

R17 R12 R19

Adaptive Multidimensional
Indexing

Problem: How to subdivide records”
(there’s no globally ideal sort order)

Approach 1: Take a hint from the query workload.
(Use query boundaries as partition points)

Approach 2: Keep learning from the query workload.
(Repartition data according to query boundaries)

Adaptive Multidimensional
Indexing

* Language: [Your Choice — C/C++ Suggested]

* First Steps: Implement a simple R* tree in your
language of choice.

 Expected Outcomes: A 2-dimensional cracker
index, ideally supporting dynamic repartitioning as
workloads change.

Mimir on SparkSQL

sk’

Mimir on SparkSQL

Relational Algebra Spark DataFrames
Relation DataFrame
Project R.map { tuple => ... }
Select R.filter { tuple => ... }

Aggregate R.groupBy().[...]

Join R.flatMap { tupleR => S.map { tupleS => ... } }
Union R.union(S)

Mimir on SparkSQL

Devil in the Details

Implementing User-defined functions and aggregates
Spark is Read-Only (Mimir needs metadata)
Dynamically compiling maps, filters, etc...

Schema management

Mimir on SparkSQL

* Language: Scala
* First Steps: Get Mimir compiling

 Expected Outcomes: A version of mimir backed
by SparkSQL, with an independent metadata store.

IN-Class Assignment

 Form a group of 4 as a project group for the
duration of the semester

 Come up will a clever group name

* Challenge: form a group with people you do not
know or do not know well

