
Project Seeds
Languages & Runtimes for Big Data

Reminder
• Homework 1: Database Cracking

• Read the paper (linked from the course page)

• Submit 2 discussion points (strength and weakness
of the work) or make a counterargument to someone
else’s points via Disqus

• If you’re uncomfortable using Disqus, email me (with
[CSE-662] in the subject line)

• Disqus thread started for group formation

Types of Projects

• Data Quality

• Query Processing

• Index Structures

• Pocket Scale Data

Checkpoint Expectations
• Checkpoint 1: Project Description (Due by 11:59 PM Sept. 26)

• What is the specific challenge that you will solve?
• What metrics will you use to evaluate success?
• What deliverables will you produce?

• Checkpoint 2: Progress Report (Due by 11:59 PM Oct. 22)
• What challenges have you overcome so far?
• How does your existing work compare to other, similar approaches?
• How have your goals changed from checkpoint 1?
• What challenges remain for you to overcome?

• Checkpoint 3: Final Report (Due by 11:59 PM Dec. 3)
• What specific challenge did you solve?
• How does your final solution compare to other, similar approaches?

Deferred Constraint-Based
Data Validation

Constraint
Temperature Changes at < 5˚ C/Hr

One Unique SS# Per Person
Weight Variance < 20lb

Constraint Violations
{ <12:45, 20˚C>, <13:45, 30˚C> }

{ <12345, “Alice”>, <12345, “Bob”> }
{ <“Jan”, 160lb>, <“Feb”, 180lb>, <“Mar”, 220lb> }

Deferred Constraint-Based
Data Validation

Query
Average Temperature Over the Past Week

What’s Bob’s SS#?
What was the weight in Feb?

Constraint Violations
{ <12:45, 20˚C>, <13:45, 30˚C> }

{ <12345, “Alice”>, <12345, “Bob”> }
{ <“Jan”, 160lb>, <“Feb”, 180lb>, <“Mar”, 220lb> }

Answer
 25˚C (but …)
12345 (but …)
180 lb (but …)

Deferred Constraint-Based
Data Validation

Query
Average Temperature Over the Past Week

What’s Bob’s SS#?
What was the weight in Feb?

Constraint Repairs

Answer
 25˚C ± 3˚
12345 or ?

180 lb ± 40 lb

Deferred Constraint-Based
Data Validation

• Language: SQL + (Scala or Java)

• First Steps: Read up on constraint repair and
triggers.

• Expected Outcomes: I give you a query, you tell
me which rows/cells are complicit in a constraint
violation.

Query Sampling Optimizer
Uncertain Data

< Spot, { Alive | Dead } >

SELECT COUNT(*) FROM Cats
WHERE State = ‘Alive’;

 COUNT

 { 0 | 1 }

Query Sampling Optimizer
Uncertain Data

World 1: < Spot, Alive >
World 2: < Spot, Dead >

SELECT COUNT(*) FROM Cats
WHERE State = ‘Alive’;

 WORLD | COUNT
-------+--------
 1 | 1
 2 | 0

Query Sampling Optimizer

SELECT COUNT(*) FROM Cats
WHERE State = ‘Alive’
GROUP BY WORLD;

 WORLD | COUNT
-------+--------
 1 | 1
 2 | 0

 WORLD | Cat | State
-------+--------+--------
 1 | Spot | Alive
 2 | Spot | Dead

Query Sampling Optimizer

1 cat = 2 worlds

2 cats = 4 worlds

10 cats = 1024 worlds

…

n cats = 2N worlds

Query Sampling Optimizer

Idea: Sample from the worlds

Query Sampling Optimizer
 WORLD | Cat | State
-------+--------+--------
 1 | Spot | Alive
 2 | Spot | Dead

Interleaved:

Tuple Bundle:
 Cat | State
-------+-----------------
 Spot | [Alive, Dead]

 Cat | State_1 | State_2
--------+---------+----------
 Spot | Alive | Dead

or

Query Sampling Optimizer

Interleaved:
SELECT COUNT(*) FROM Cats
WHERE State = ‘Alive’
GROUP BY WORLD;

SELECT
 SUM(
 CASE WHEN State_1 = ‘Alive’ THEN 1
 ELSE 0 END) AS COUNT_1,
 SUM(
 CASE WHEN State_2 = ‘Alive’ THEN 1
 ELSE 0 END) AS COUNT_2
FROM Cats;

Tuple Bundle:

a

Query Sampling Optimizer

• Language: RA + Scala

• First Steps: Install Mimir and get it to compile

• Expected Outcomes: I give you a query and you
give me a sampling-based execution plan for it.

Explaining Offset-Outliers
SELECT Neighborhood, Week, COUNT(*)
FROM PoliceComplaints
WHERE Type = ‘Noise’

Neighborhood Week COUNT

Black Rock 1 53

Black Rock 2 10

Amherst 1 5

Amherst 2 6

Elmwood 1 10

Elmwood 2 9

Why so many?

Explaining Offset-Outliers
e.g., There were fewer noise complaints

that week everywhere else.

of noise complaints
in all of Buffalo is stable

Black Rock, Week 1
is counterbalanced by

a dip elsewhere

“What’s Normal” “How’s this different
from normal”

Explaining Offset-Outliers
“What’s Normal”

For all X:
f(X) ≈
 SELECT g, COUNT(*)
 FROM Data
 WHERE c = X
 GROUP BY g

Explaining Offset-Outliers
“What’s Normal”

For all Cities C:
f(C) ≈
 SELECT week, COUNT(*)
 FROM NoiseComplaints
 WHERE city = C
 GROUP BY week

Explaining Offset-Outliers
“What’s Normal”

For all Cities C:
f(C) =
 SELECT AVG(count) FROM (
 SELECT week, COUNT(*) AS count
 FROM …
);

 SELECT week, COUNT(*)
 FROM NoiseComplaints
 WHERE city = C
 GROUP BY week

Explaining Offset-Outliers
SELECT neighborhood, city, week, COUNT(*)
FROM NoiseComplaints
GROUP BY week

Neighborhood City Week COUNT

Black Rock BUF 1 53

Black Rock BUF 2 10

Amherst BUF 1 5

Amherst BUF 2 6

Elmwood BUF 1 3

Elmwood BUF 2 9
…

Why so many?

Explaining Offset-Outliers
Question 1: Is the overall situation “normal”?

(Are there more noise complaints than usual in Buffalo?)

Question 2: Is the cell abnormally high (or low)?

(Are there more noise complaints in Black Rock
compared to the average week?)

Question 3: What counterbalances the cell?

(Are there other neighborhoods where
noise complaints dropped that week?)

Explaining Offset-Outliers

• Language: SQL + [Your Choice]

• First Steps: Write a piece of code to execute
aggregate SQL queries with varying sets of group-
by terms.

• Expected Outcomes: I give you a dataset and a
set of stability constraints on that data, and you
give me a set of explanations for outliers.

Physical Layouts for Forked Data

8/29/2017 home.xthemage.net/graphs/climate.html?period=monthly

http://home.xthemage.net/graphs/climate.html?period=monthly 1/1

Armory Temperature Buffalo Temperature

Tue Aug 01, 11:06

Thu Aug 03, 18:40

Sun Aug 06, 02:13

Tue Aug 08, 09:46

Thu Aug 10, 17:20

Sun Aug 13, 00:53

Tue Aug 15, 08:26

Thu Aug 17, 16:00

Time

Sat Jul 29, 15:50

5.00

10.00

15.00

20.00

25.00

30.00

T
e
m
p
e
ra
tu
re
 ˚
C

0.00

35.00

Buffalo Humidity Spider Plant Soil Hu...

Tue Aug 01, 11:06

Thu Aug 03, 18:40

Sun Aug 06, 02:13

Tue Aug 08, 09:46

Thu Aug 10, 17:20

Sun Aug 13, 00:53

Tue Aug 15, 08:26

Thu Aug 17, 16:00

Time

Sat Jul 29, 15:50

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

H
u
m
id
it
y
 %

0.00

100.00

Physical Layouts for Forked Data

Just because something is an outlier doesn’t mean
that the data should be removed.

… but now you need to keep track of
multiple “versions” of the data.

Physical Layouts for Forked Data

Query A: Lookup key K in version V

Query B: Lookup keys in range [K1,K2] in version V

Query C: Find all versions with keys in range [K1,K2]

Query D: Find all keys in range [K1,K2]
with identical values in all versions

Query E: Find all keys in range [K1,K2]
with at least one version-based difference.

Physical Layouts for Forked Data

Naive 1: Version Tuples

Faster for querying
one version (A, B)

Naive 2: Version Tables

Faster for querying
all versions (C, D, E)

(or indexes)

Physical Layouts for Forked Data

• Language: [Your Choice – C/C++ Suggested]

• First Steps: Implement a simple B+ tree in your
language of choice.

• Expected Outcomes: A data store that supports
efficient point/range queries across branches,
forking, and both batch and single-branch
updates.

Adaptive Multidimensional
Indexing

image credit: wikipedia

Adaptive Multidimensional
Indexing

Problem: How to subdivide records?
(there’s no globally ideal sort order)

Approach 1: Take a hint from the query workload.
(Use query boundaries as partition points)

Approach 2: Keep learning from the query workload.
(Repartition data according to query boundaries)

Adaptive Multidimensional
Indexing

• Language: [Your Choice – C/C++ Suggested]

• First Steps: Implement a simple R* tree in your
language of choice.

• Expected Outcomes: A 2-dimensional cracker
index, ideally supporting dynamic repartitioning as
workloads change.

Mimir on SparkSQL

Mimir on SparkSQL

Relational Algebra

Relation
Project
Select

Aggregate
Join

Union

Spark DataFrames

DataFrame
R.map { tuple => … }
R.filter { tuple => … }

R.groupBy().[…]
R.flatMap { tupleR => S.map { tupleS => ... } }

R.union(S)

Mimir on SparkSQL

Devil in the Details

Implementing User-defined functions and aggregates

Spark is Read-Only (Mimir needs metadata)

Dynamically compiling maps, filters, etc…

Schema management

Mimir on SparkSQL

• Language: Scala

• First Steps: Get Mimir compiling

• Expected Outcomes: A version of mimir backed
by SparkSQL, with an independent metadata store.

In-Class Assignment

• Form a group of 4 as a project group for the
duration of the semester

• Come up will a clever group name

• Challenge: form a group with people you do not
know or do not know well

