
CSE 662 - Database Languages & Runtimes

Functional
Data Structures

Sept 1, 2017

1

(Multiple diagrams from ‘Purely Functional Datastructures’ by Chris Okasaki)

CSE 662 - Database Languages & Runtimes

Mutable vs Immutable

2

X = [Alice, Bob, Carol, Dave]

Alice Bob Carol Dave

X[2] Carol

X[2] := Eve

Eve

CSE 662 - Database Languages & Runtimes

Mutable vs Immutable

3

X = [Alice, Bob, Carol, Dave]

Alice Bob Carol Dave

X[2] := Eve
Thread 1 Thread 2

EveCarol ?

X[2]

CSE 662 - Database Languages & Runtimes

Mutable Datastructures

• The programmer’s intended ordering is unclear

• Atomicity/Correctness requires locking

• Versioning requires copying the data structure

• Cache coherency is expensive!

4

Can these problems be avoided?

CSE 662 - Database Languages & Runtimes

Immutable Data Structures

5

X = [Alice, Bob, Carol, Dave]

Alice Bob Carol Dave

X[2] Carol

X[2] := Eve Don’t allow writes!

But what if we need to update the structure?

CSE 662 - Database Languages & Runtimes

Carol Eve

Immutable Data Structures

6

Alice Bob Dave

Key Insight: Immutable components can be re-used!

CSE 662 - Database Languages & Runtimes

Carol Eve

Immutable Data Structures

7

Alice Bob Dave

Key Insight: Immutable components can be re-used!

CSE 662 - Database Languages & Runtimes

Carol Eve

Immutable Data Structures

8

Alice Bob Dave

Semantics are clearer: Exactly one ‘version’ at any time

CSE 662 - Database Languages & Runtimes

EveCarol

Immutable Data Structures

9

Alice Bob Dave

Data is added, not replaced: No cache coherency problems

CSE 662 - Database Languages & Runtimes

Immutable Data Structures

• Once an object is created, it never changes.

• When all pointers to an object go away, the object
is garbage collected.

• Only the ‘root’ pointer can ever change (to point to
a new version of the data structure)

10

(a.k.a. ‘Functional’ or ‘Persistent’ Data Structures)

CSE 662 - Database Languages & Runtimes

Linked Lists

11

xs = pop(xs)

ys = push(ys,1)

Only xs and ys need to change

CSE 662 - Database Languages & Runtimes

Linked Lists

12

zs = append(xs,ys)

This entire part needs to be rewritten

CSE 662 - Database Languages & Runtimes

Linked Lists

13

CSE 662 - Database Languages & Runtimes

Class Exercise 1

14

How would you implement
update(list, index, value)

CSE 662 - Database Languages & Runtimes

Class Exercise 2

15

Implement a set with:

set init()
boolean member(set, elem)
set insert(set, elem)

CSE 662 - Database Languages & Runtimes

Lazy Evaluation

16

Can we do better?

CSE 662 - Database Languages & Runtimes

Putting Off Work

17

x = “expensive()”

print x

print x

Fast
(just saving a ‘todo’)

Slow
(performing the ‘todo’)

Fast
(‘todo’ already done)

CSE 662 - Database Languages & Runtimes

Class Exercise 3

18

Make it better!

CSE 662 - Database Languages & Runtimes

Putting Off Work

19

concatenate(a, b) {
 a’, front = pop(a)
 if a’ is empty
 return (front, b)
 else
 return (front, “concatenate(a’,b)”)
}

What is the time complexity of concatenate?
What happens to reads?

CSE 662 - Database Languages & Runtimes

Lazy Evaluation

• Save work for later…

• … and avoid work that is never required.

• … to spread work out over multiple calls.

• … for better ‘amortized’ costs.

20

CSE 662 - Database Languages & Runtimes

Amortized Analysis

• Allow operation A to ‘pay it forward’ for another
operation B that hasn’t happened yet

• A’s time complexity goes up by X.

• B’s time complexity goes down by X.

21

CSE 662 - Database Languages & Runtimes

Example: Amortized Queues

22

Preliminaries: Implement an efficient enqueue()/dequeue()

CSE 662 - Database Languages & Runtimes

Example: Amortized Queues

23

enqueue(): Push onto ‘todo’ stack

‘current’ queue ‘todo’ stack

dequeue(): Pop ‘current’ queue
if empty, reverse ‘todo’ stack to make new ‘current’ queue

What is the cost?

What is the cost?

CSE 662 - Database Languages & Runtimes

Example: Amortized Queues

24

enqueue(): Push onto ‘todo’ stack

‘current’ queue ‘todo’ stack

dequeue(): Pop ‘current’ queue
if empty, reverse ‘todo’ stack to make new ‘current’ queue

push() is O(1) + 1 credit

Pop is O(1); Reverse uses N credits for O(1) amortized

