Functional
Data Structures

Sept 1, 2017

(Multiple diagrams from ‘Purely Functional Datastructures’ by Chris Okasaki)

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Mutable vs Immutable

X = [Alice, Bob, Carol, Dave]

Alice Bob Eve Dave

X[2] —{p PEE[E

X[2] := Eve

.[é University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Mutable vs Immutable

X = [Alice, Bob, Carol, Dave]

Alice Bob Carol Dave

Thread 1 Thread 2
X[2] := Eve X[2]
S

?

.[é University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Mutable Datastructures

* The programmer’s intended ordering is unclear
» Atomicity/Correctness requires locking
* \Versioning requires copying the data structure

* Cache coherency is expensive!

Can these problems be avoided?

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Immutable Data Structures

X = [Alice, Bob, Carol, Dave]

Alice Bob Carol Dave

P> Eve Don'tallow writes!

But what if we need to update the structure?

.[é University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Immutable Data Structures

N

Bob

Carol Dave

Key Insight: Immutable components can be re-used!

.[é University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Immutable Data Structures

N

Bob

Carol Dave

Key Insight: Immutable components can be re-used!

.[é University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Immutable Data Structures

N

N

Bob

Carol Dave

Semantics are clearer: Exactly one ‘version’ at any time

.[é University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Immutable Data Structures

N

Data is added, not replaced: No cache coherency problems

tﬁ University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Immutable Data Structures

(a.k.a. ‘Functional’ or ‘Persistent’ Data Structures)

 Once an object is created, it never changes.

 When all pointers to an object go away, the object
IS garbage collected.

* Only the ‘root’ pointer can ever change (to point to
a new version of the data structure)

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

L Inkea LiIsts

o[FIFEE »EFEEEE

Only xs and ys need to change

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

L Inkea LiIsts

N nENnEN O O ENnENED

zs = append(xs,ys)

This entire part needs to be rewritten

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

L Inkea LiIsts

z—-{0] (1] F+{2] 3)
(o] Fo{1]F+{2]-] y[3]F+{4] F+{5]:]

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Class Exercise 1

How would you iImplement
update(list, index, value)

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Class Exercise 2

Implement a set with:

set 1nit()
boolean member (set, elem)
set 1nsert(set, elem)

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

| azy Evaluation

0] (1] 2] +)
o—e(0] Fo{1] F+{2]-] y[3] F+{4] F+{5]:]

Can we do better?

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Putting Off Work

— ne Y Fast
X expensive() (just saving a ‘todo’)
g Slow
print x (performing the ‘todo’)
print x rast

(‘todo’ already done)

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Class Exercise 3

0] (1] 2] +)
o—e(0] Fo{1] F+{2]-] y[3] F+{4] F+{5]:]

Make It better!

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Putting Oft Work

concatenate(a, b) {
a’', front = pop(a)
1f a’ 1s empty
return (front, Db)
else
return (front, “concatenate(a’,b)”)

What is the time complexity of concatenate?
What happens to reads”

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

| azy evaluation

e Save work for later...
* ... and avoid work that is never required.
* ... 1o spread work out over multiple calls.

e .. for better ‘amortized’ costs.

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Amortized Analysis

* Allow operation A to ‘pay it forward’ for another
operation B that hasn't happened yet

* A's time complexity goes up by X.

* B’s time complexity goes down by X.

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Example: Amortized Queues

xs—-{0] 1] 3+{2] -]

Preliminaries: Implement an efficient enqueue ()/dequeue ()

aaanE)

el 3+ {2]-] [SI3{4]3~[3]]

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Example: Amortized Queues

XS =)
E‘EE* 5] Spefa] ge{s]s]
v v

‘current’ queue todo’ stack

enqueue (): Push onto 'todo’ stack
What is the cost?

dequeue (): Pop ‘current’ queue

if empty, reverse ‘todo’ stack to make new ‘current’ queue
What is the cost?

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

Example: Amortized Queues

XS =)
E‘EE]* 5] fa] g={s]e
v v

‘current’ queue todo’ stack

enqueue (): Push onto 'todo’ stack
push() is O(1) + 1 credit
dequeue (): Pop ‘current’ queue
if empty, reverse ‘todo’ stack to make new ‘current’ queue
Pop is O(1); Reverse uses N credits for O(1) amortized

% University at Buffalo The State University of New York CSE 662 - Database Languages & Runtimes

