Just-In-Time
Data Structures

Languages and Runtimes for Big Data

'l'é University at Buffalo The State University of New York

Updates

e Slack Channel

e #cseb62-fall2017 @ http://ubodin.slack.com

* Reading for Monday: MCDB

* Exactly one piece of feedback (see next slide)

http://ubodin.slack.com

Ié University at Buffalo The State University of New York

Don't parrot the paper back

* Find something that the paper says is good and
figure out a set of circumstances where it's bad.

* What else does something similar, why is the
paper better, and under what circumstances?

* Think of circumstances and real-world settings
where the proposed system is good.

* Evaluation: How would you evaluate their solution
IN a way that they didn.

‘é University at Buffalo The State University of New York

What is best in life?

(for organizing your data)

(ﬂ University at Buffalo The State University of New York

Storing & Organizing Data

Binary Tree Heap

e 2 4 3

API
Insert
“— Range Scan

\ Sorted Array
e S5 4 5

... and many more.

Which should you use?

‘é University at Buffalo The State University of New York

You guessed wrong.

(Unless you didn’t)

'l'é University at Buffalo The State University of New York

Workloads

§ Sorted Array

Write Cost

Read Cost

Viacin data et lecsiadas aviexechsetgef i adediise

'l'é University at Buffalo The State University of New York

Workloads

Current Workload

\ Sorted Array Maﬂy ReadS

Some Writes

Write Cost

No Reads

Many Reads

Read Cost

We want to gracefully transition between different DSes

Traditional Data Structures

Physical Layout & Logic

E 2

Manipulation Logic Access Logic

lﬂ University at Buffale The State University of New York

Just-in-Time Data Structures

Physical Layout & Logic

B

Abstraction Layer

E 2

Manipulation Logic Access Logic

% University at Buffale The State University of New York

= Picking The Right Abstraction
Accessing and Manipulating a JI
Case Study: Adaptive Indexes
Experimental Results

Demo

‘é University at Buffalo The State University of New York

Abstractions

My Data

|

Black Box

(A set of integer records)

‘é University at Buffale The State University of New York

INnsertions

Let's say | want to add a 37?

My Data

Black Box

This is correct, but probably not efficient

lﬂ University at Buffale The State University of New York

INnsertions

Insertion creates a temporary representation...

(ﬂ University at Buffalo The State University of New York

INnsertions

... that we can
eventually rewrite into
a form that is correct
and efficient

(once we know what
‘efficient’ means)

'[é University at Buffale The State University of New York

Traditional Data Structure Design

Binary Tree Inner Nodes

00000
Leaf Nodes

(Maybe In a Linked List)

lﬂ University at Buffale The State University of New York

Traditional Data Structure Design

Heap

5 e 2 4 3

/ Sorted Array

Contiguous Array
of Records — NN 2 3 4 5

lﬂ University at Buffale The State University of New York

Bullding Blocks

Structural Properties

A s 4 5 [0 B2

Concatenate Array (Unsorted)

Semantic Properties

A 2 5 4 5

BinTree Node Array (Sorted)

% University at Buffale The State University of New York

Picking The Right Abstraction

= Accessing and Manipulating a JITD
Case Study: Adaptive Indexes
Experimental Results

Demo

lﬂ University at Buffale The State University of New York

Binary Iree Insertions

Let's try something more complex: A Binary Tree

'(é University at Buffalo The State University of New York

Binary Iree Insertions

A rewrite pushes the inserted object down into the tree

lﬂ University at Buffale The State University of New York

Binary Iree Insertions

The rewrites are local.
The rest of the data structure doesn’t matter!

Iﬂ University at Buffale The State University of New York

Binary Iree Insertions

erminate recursion at the leaves

lﬂ University at Buffale The State University of New York

Range Scan(low, high)

A

A E
5 i3
N 4 5

[Recur 1nto A]
UNION [Recur into B]

IF (sep > high) { [Recur into A] }
ELSIF (sep < low) { [Recur into B] }
ELSE { [Recur into A]

UNION [Recur into B] }

Full Scan

2X Binary Search

lé University at Buffalo The State University of New York

Synergy

LETS FORM PROACTIVE
SYNERGY RESTRUCTURING
TEAMS,

Hybrid Insertions

lé University at Buffalo The State University of New York

Hybrid Insertions

BinTree
~ Rewrite

Ié University at Buffalo The State University of New York

Hybrid Insertions

Binary Tree Sorted Array
Rewrite Rewrite

Ié University at Buffalo The State University of New York

Synergy

Binary Tree Binary Tree Leaf
Rewrite Rewrite

Which rewrite gets used depends on workload-specific policies.

% University at Buffale The State University of New York

Picking The Right Abstraction

Accessing and Manipulating a JITD
= Case Study: Adaptive Indexes
Experimental Results

Demo

% University at Buffale The State University of New York

Adaptive Indexes

Your Index Your Workload

‘é University at Buffale The State University of New York

Adaptive Indexes

Your Index Your Workload

— [Ime

'[é University at Buffale The State University of New York

Adaptive Indexes

Your Index Your Workload

— [Ime

‘é University at Buffalo The State University of New York

Range-Scan Adaptive Indexes

Start with an Unsorted List of Records
Converge to a Binary Tree or Sorted Array
* Cracker Index
* Converge by emulating quick-sort
* Adaptive Merge Trees

* Converge by emulating merge-sort

Cracker Indexes

Read [2,4)

‘é University at Buffale The State University of New York

Cracker Indexes

Radix Partition on Query Boundaries (Don’t Sort)

‘é University at Buffale The State University of New York

Cracker Indexes

e

[1.2)

[2,3)[[3.4)] [4,)

Read [1,3)
Read [2,4)

Each query does less and less work

Rewrite-Based Cracking

Read [2,4)

Rewrite-Based Cracking

R S5 2 5 4

In-Place Sort as Before

Rewrite-Based Cracking

A

s A

Fragment and Organize

'[é University at Buffale The State University of New York

Rewrite-Based Cracking

Continue fragmenting as queries arrive.
(Can use Splay Tree For Balance)

Adaptive Merge lrees

—

Before the first query, partition data...

Adaptive Merge lrees

m o

...and build fixed-size sorted runs

Iﬂ University at Buffale The State University of New York

Adaptive Merge lrees

Merge only relevant records into target array

'[é University at Buffale The State University of New York

Adaptive Merge lrees

Merge only relevant records into target array

(ﬂ University at Buffalo The State University of New York

Adaptive Merge lrees

Continue merging as new queries arrive

Rewrite-Based Merging

‘é University at Buffale The State University of New York

Adaptive Merge lrees

Rewrite any unsorted array into a union of sorted runs

‘é University at Buffalo The State University of New York

Adaptive Merge lrees

AR

Read [2,4)

Method 1: Merge Relevant Records into LHS Run
(Sub-Partition LHS Runs to Keep Merges Fast)

Adaptive Merge lrees

or...

‘é University at Buffale The State University of New York

Adaptive Merge lrees

A
A A

Method 2: Partition Records into High/Mid/Low
(Union Back High & Low Records)

‘é University at Buffalo The State University of New York

Synergy

Cracking creates smaller unsorted arrays, so fewer
runs are needed for adaptive merge

Sorted arrays don’t need to be cracked!
Insertions naturally transformed into sorted runs.

(not shown) Partial crack transform pushes newly
inserted arrays down through merge tree.

% University at Buffale The State University of New York

Picking The Right Abstraction

Accessing and Manipulating a JITD
Case Study: Adaptive Indexes
= Experimental Results

Demo

‘é University at Buffalo The State University of New York

EXperiments

Cracker Index
AP

* RangeScan(low, high)

VS * |nsert(Array)
Adaptive Merge Tree Gimmick
* |Insert s Free.
Vs * RangeScan uses work

done to answer the query
JITDs to also organize the data.

'l'é University at Buffalo The State University of New York

EXperiments

Less organization
per-read

Cracker Index <

VS

More organization
per-read

Adaptive Merge Tree -

VS

JITDs

‘é University at Buffale The State University of New York

Cracker Index

Reads

8 Soe o° °
TN RS RR
. B %

1 ‘ Yy .) . v » e » o s . N
%02 «”\‘ e . . (‘|-',»’~\ L G .*_ - ~
: art N oy \ @ Is
’é - ol T A SO S S S PPN S & 1 A ST C
° o (o u L 3 b P g o r4 v .
A4 °

2000 4000 w6000 8000

0.1

0.01

Time (s)

0001 [

0.0001
1e-05

0

2000 4000 “ 6000 8000

Iteration

100 M records
(1.6 GB)

10,000 reads for
2-3 Kk records
each

10M additional

records written
after 5,000 reads

'[é University at Buffale The State University of New York

Cracker Index

Reads

10

0.1 ;
001 [‘

0.001 [N . WG AR S e
0.0001 S ,V "“'\v‘,,‘; ,,M, IR _ ' ’ :}E;{; 'A,Y:.'xt "" A: I - - s S | OW
RN O TOTEEIRTERRER NG
le-05 -Convergence
2l 2000 4000 6000 8000 10000

(not shown) <§AQAD \' Merge Tree

10 o

0.1
0.01
0.001 2%
0.0001
le-05

Time (s)

\.‘_ .'oo.

Super-High
Initial Costs

Time (s)

e 4—= Bimodal
0 2000 4000 6000 8000 10000 Distribution

Iteration

'[é University at Buffale The State University of New York

Policy 1: Swap (Crack for 2k reads after write, then merge)

0 2000 4000 6000 3000 10000

Iteration

'[é University at Buffale The State University of New York

Policy 1: Swap (Crack for 2k reads after write, then merge)

3000 10000

Switchover fro Cack to Merge

'[é University at Buffale The State University of New York

Policy 1: Swap (Crack for 2k reads after write, then merge)

Reads

2000 4009 6000 8000 10000

/" Tteration

Synergy from Crakin (lower upfront cost)

'[é University at Buffale The State University of New York

Policy 2: Transition (Gradient from Crack to Merge at 1k)

0 2000 4000 6000 3000 10000

Iteration

'[é University at Buffale The State University of New York

Policy 2: Transition (Gradient from Crack to Merge at 1k)

3000 10000

Gradient Period (% Chnce of Crack or Merge)

'[é University at Buffale The State University of New York

Policy 2: Transition (Gradient from Crack to Merge at 1k)

Reads

10000

Tri-modal distribuion:CraCking and Merging
on a per-operation basis

Iﬂ University at Buffale The State University of New York

Overall Throughput

Cracking =——f— Swap =)
Merge —©— Transition —é—

Throughput (ops/s)

0 2000 4000 6000 8000 10000

Iteration

JITDs allow fine-grained control over DS behavior

'[é University at Buffalo The State University of New York

Just-in-Time Data Structures

* Separate logic and structure/semantics
 Composable Building Blocks
* Local Rewrite Rules

* Result: Flexible, hybrid data structures.

» Result: Graceful transitions between different behaviors.

« https://github.com/UBOdin/jitd

Questions?

https://github.com/UBOdin/jitd

