Just-In-Time
Data Structures

Languages and Runtimes for Big Data
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Updates

e Slack Channel

e #cseb62-fall2017 @ http://ubodin.slack.com

* Reading for Monday: MCDB

* Exactly one piece of feedback (see next slide)


http://ubodin.slack.com
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Don't parrot the paper back

* Find something that the paper says is good and
figure out a set of circumstances where it's bad.

* What else does something similar, why is the
paper better, and under what circumstances?

* Think of circumstances and real-world settings
where the proposed system is good.

* Evaluation: How would you evaluate their solution
IN a way that they didn.
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What is best in life?

(for organizing your data)
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Storing & Organizing Data

Binary Tree Heap

e 2 4 3

API
Insert
“— Range Scan

\ Sorted Array
e S5 4 5

... and many more.

Which should you use?



‘é University at Buffalo The State University of New York

You guessed wrong.

(Unless you didn’t)
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Workloads

§ Sorted Array

Write Cost

Read Cost

Viacin data et lecsiadas aviexechsetgef i adediise
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Workloads

Current Workload

\ Sorted Array Maﬂy ReadS

Some Writes

Write Cost

No Reads

Many Reads

Read Cost

We want to gracefully transition between different DSes



Traditional Data Structures

Physical Layout & Logic

E 2

Manipulation Logic Access Logic
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Just-in-Time Data Structures

Physical Layout & Logic

B

Abstraction Layer

E 2

Manipulation Logic Access Logic
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= Picking The Right Abstraction
Accessing and Manipulating a JI
Case Study: Adaptive Indexes
Experimental Results

Demo
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Abstractions

My Data

|

Black Box

(A set of integer records)
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INnsertions

Let's say | want to add a 37?

My Data

Black Box

This is correct, but probably not efficient
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INnsertions

Insertion creates a temporary representation...



(ﬂ University at Buffalo The State University of New York

INnsertions

... that we can
eventually rewrite into
a form that is correct
and efficient

(once we know what
‘efficient’ means)
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Traditional Data Structure Design

Binary Tree Inner Nodes

00000
Leaf Nodes

(Maybe In a Linked List)
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Traditional Data Structure Design

Heap

5 e 2 4 3

/ Sorted Array

Contiguous Array
of Records — NN 2 3 4 5
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Bullding Blocks

Structural Properties

A s 4 5 [0 B2

Concatenate Array (Unsorted)

Semantic Properties

A 2 5 4 5

BinTree Node Array (Sorted)
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Picking The Right Abstraction

= Accessing and Manipulating a JITD
Case Study: Adaptive Indexes
Experimental Results

Demo
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Binary Iree Insertions

Let's try something more complex: A Binary Tree
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Binary Iree Insertions

A rewrite pushes the inserted object down into the tree
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Binary Iree Insertions

The rewrites are local.
The rest of the data structure doesn’t matter!
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Binary Iree Insertions

erminate recursion at the leaves
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Range Scan(low, high)

A

A E
5 i3
N 4 5

[Recur 1nto A]
UNION [Recur into B]

IF (sep > high) { [Recur into A] }
ELSIF (sep < low) { [Recur into B] }
ELSE { [Recur into A]

UNION [Recur into B] }

Full Scan

2X Binary Search
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Synergy

LETS FORM PROACTIVE
SYNERGY RESTRUCTURING
TEAMS,




Hybrid Insertions
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Hybrid Insertions

BinTree
~ Rewrite
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Hybrid Insertions

Binary Tree Sorted Array
Rewrite Rewrite
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Synergy

Binary Tree Binary Tree Leaf
Rewrite Rewrite

Which rewrite gets used depends on workload-specific policies.
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Picking The Right Abstraction

Accessing and Manipulating a JITD
= Case Study: Adaptive Indexes
Experimental Results

Demo
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Adaptive Indexes

Your Index Your Workload
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Adaptive Indexes

Your Index Your Workload

— [Ime
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Adaptive Indexes

Your Index Your Workload

— [Ime
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Range-Scan Adaptive Indexes

Start with an Unsorted List of Records
Converge to a Binary Tree or Sorted Array
* Cracker Index
* Converge by emulating quick-sort
* Adaptive Merge Trees

* Converge by emulating merge-sort



Cracker Indexes

Read [2,4)
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Cracker Indexes

Radix Partition on Query Boundaries (Don’t Sort)
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Cracker Indexes

e

[1.2)

[2,3)[[3.4)] [4,)

Read [1,3)
Read [2,4)

Each query does less and less work



Rewrite-Based Cracking

Read [2,4)




Rewrite-Based Cracking

R S5 2 5 4

In-Place Sort as Before



Rewrite-Based Cracking

A

s A

Fragment and Organize
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Rewrite-Based Cracking

Continue fragmenting as queries arrive.
(Can use Splay Tree For Balance)



Adaptive Merge lrees

—

Before the first query, partition data...



Adaptive Merge lrees

m o

...and build fixed-size sorted runs
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Adaptive Merge lrees

Merge only relevant records into target array
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Adaptive Merge lrees

Merge only relevant records into target array
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Adaptive Merge lrees

Continue merging as new queries arrive



Rewrite-Based Merging
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Adaptive Merge lrees

Rewrite any unsorted array into a union of sorted runs
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Adaptive Merge lrees

AR

Read [2,4)

Method 1: Merge Relevant Records into LHS Run
(Sub-Partition LHS Runs to Keep Merges Fast)



Adaptive Merge lrees

or...
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Adaptive Merge lrees

A
A A

Method 2: Partition Records into High/Mid/Low
(Union Back High & Low Records)
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Synergy

Cracking creates smaller unsorted arrays, so fewer
runs are needed for adaptive merge

Sorted arrays don’t need to be cracked!
Insertions naturally transformed into sorted runs.

(not shown) Partial crack transform pushes newly
inserted arrays down through merge tree.
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Picking The Right Abstraction

Accessing and Manipulating a JITD
Case Study: Adaptive Indexes
= Experimental Results

Demo
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EXperiments

Cracker Index
AP

* RangeScan(low, high)

VS * |nsert(Array)
Adaptive Merge Tree Gimmick
* |Insert s Free.
Vs * RangeScan uses work

done to answer the query
JITDs to also organize the data.
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EXperiments

Less organization
per-read

Cracker Index <

VS

More organization
per-read

Adaptive Merge Tree -

VS

JITDs
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Cracker Index

Reads
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records written
after 5,000 reads
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Cracker Index

Reads
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Policy 1: Swap (Crack for 2k reads after write, then merge)

0 2000 4000 6000 3000 10000

Iteration
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Policy 1: Swap (Crack for 2k reads after write, then merge)

3000 10000

Switchover fro Cack to Merge
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Policy 1: Swap (Crack for 2k reads after write, then merge)

Reads

2000 4009 6000 8000 10000

/" Tteration

Synergy from Crakin (lower upfront cost)
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Policy 2: Transition (Gradient from Crack to Merge at 1k)

0 2000 4000 6000 3000 10000

Iteration
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Policy 2: Transition (Gradient from Crack to Merge at 1k)

3000 10000

Gradient Period (% Chnce of Crack or Merge)
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Policy 2: Transition (Gradient from Crack to Merge at 1k)

Reads

10000

Tri-modal distribuion:CraCking and Merging
on a per-operation basis
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Overall Throughput

Cracking =——f— Swap =)
Merge —©—  Transition —é—

Throughput (ops/s)

0 2000 4000 6000 8000 10000

Iteration

JITDs allow fine-grained control over DS behavior
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Just-in-Time Data Structures

* Separate logic and structure/semantics
 Composable Building Blocks
* Local Rewrite Rules

* Result: Flexible, hybrid data structures.

» Result: Graceful transitions between different behaviors.

« https://github.com/UBOdin/jitd

Questions?


https://github.com/UBOdin/jitd

