v Motivation

v Examples
e 4<->9
e Sensor Example

e NYC Taxi Cabs -> Hurricane Sandy vs $100 tip vs Dropoff in Brazil

v Core problem: There is no longer one interpretation of the data
v Current state of the art:
v Design a schema to account for uncertainty
e Problem: Now users need to be explicitly aware of uncertainty
e Problem: Slow, upfront work
v Settle on one interpretation that works for your use case
¢ Problem: If the interpretation you pick is wrong, you get errors
e Problem: The data could be wrong if used for a different use case
¢ Problem: Slow, upfront work
v NULL values
¢ Problem: Hides uncertain values
v Problem: Null value semantics are aweful
e Any arithmetic with a null value (e.g., NULL + 1) evaluates to NULL
e Any comparison with null values (e.g., NULL >= 3) evaluates to UNKNOWN
e 3-Valued Boolean Logic: TRUE, UNKNOWN, FALSE
v SQL WHERE returns only TRUE values (UNKNOWN and FALSE are dropped)

e Problem: It's possible for SELECT * FROM R WHERE (X > 3) AND (X <= 3) to return an empty result on a
non-empty R

v Improved Solution: API for Uncertain/Probabilistic Queries
v Query for 'certain' answers
¢ Problem: Uncertain answers may still be useful
v Query for the best interpretation
e Problem: How do you define "best"?
v Query for all possible interpretations
¢ Problem: Hides correlations/anticorrelations
v Probabilistic queries as above, but also compute...
e ... marginal probabilities of answers
e ... expectations/variances/other statistical measures of answers

e ... rank of each possible answer (when this makes sense)

v Possible Worlds Semantics

v Each interpretation defines one world

v An uncertain database is actually a set of databases, each representing one interpretation or "possible world"
e For now, all of these databases share the same schema.
v How do we define query semantics for a set of possible worlds:
¢ Queries should return a set of "possible answers"
v Naive idea: Run the query independently in each possible world
¢ Problem: Inefficient. Can be lots of possible worlds.
¢ Problem: Could be impossible. Can be an infinite number of possible worlds

e But... This still defines a self-consistent set of rules for evaluating queries on uncertain data

v Representation Requirements
v Closed
e There exists a Q' such that Q'(Rep(D)) == Rep(Q(D))
v Meaningful
e The representation has to be useful... although for what depends on the application
v ... or better still Bijective

e |deally, it would be nice to be able to reconstruct all possible worlds from the representation.

v Factorization attempts

v Three types of uncorrelated uncertainty:

e Row-level: A row is present precisely half of all possible worlds --- and other than the row, everything else is
identical between the two halves

e Attribute-level: There are N copies of all worlds where a row is present, differing only in a single attribute which
takes N distinct values --- N may be infinity

e Open-world: There are an infinite number of worlds with an unbounded number of rows in them, and we have rules
for generating more rows

v Adding correlations
e Create an integer "world-id"

v Define a function that maps the world-id to a concrete database (or relation) instance)

e ... so how do we define these functions?

v \V/-Tables

v Null Value Semantics on Steroids
e 'Label' each Null. i.e., Nulls become Variables
v A V-table is effectively a Function:
e A possible world is defined by a mapping from labels to nulls

e Externally provided ruleset defines what's allowed to be in a labeled null
v Proving Closure for V-Tables

s Exercise for the reader

v Works for i, x, U, but not o

e ... because there's no way to represent a row that "might" be in the result set
v Works under both set and bag semantics

e ... although the representation may have some duplicate rows that need to be removed

v C-Tables

v V-Tables with an additional "Condition" column
v Each table gets an added column containing a boolean expression that may reference label symbols
e When evaluating the V-Table as a Function, plug label values into the boolean expression

e Boolean expressions that evaluate to false are not present in that specific possible world.

v Proving Closure for C-Tables
¢ Also an exercise for the reader
v Works for i, x, U, g, 6 but not generalized nm or Y

v ... well, not entirely true. It works if mand Y are allowed to create new variable symbols and constrain their values
based on the values of other symbols

e ... which means 1t and Y effectively have side effects
e Works for both bag and set representations, although as before there may be duplicates
v Simplified C-Tables (U-Relations)
e Remove Support for Labeled Nulls
v Create one row for each possible value and add to the condition column "AND [label] = [value]
e ... only works if you have a finite, discrete set of possible values
v Worldset-Decompositions

e Store the U-Relation column-store style.
v Generalized C-Tables
v Allow the creation of new variable symbols defined by formulas
e eg.,{X+2}
v Closed over SPJUA+Distinct

e ... although for aggregates/distinct the representation can get very very very large

v Weaker Models

v OR-SET encoding

e Label tuples that are not in at least one possible world with a ? (this alone is generally called Tuple-independent)
e Use sets of allowable values instead of attributes
e Can not capture correlations

v X-Tuples

e Group tuples into sets of mutually exclusive possibilities (can be combined w/ OR-SET)

v Queries on C-Tables

v Basic query types
v Certain Answers
e Answers in *all* possible worlds
v Possible Answers
e Answers in *any* possible world
v Limitations
e Expensive to compute either of these
e Possible produces too much, while certain produces too little.
v Tradeoff Points

e Best Guess (Maximal Prior) - Pick a (most likely) world and evaluate the query in it

¢ Maximal Posterior - Use probabilities (discussed next class) to pick result rows exceeding a given threshold
probability.

e Sampling - Pick a set of possible worlds at random and evaluate the query in each of those (more discussed soon)

