v Qverview

v Stream Processing

v Applications
e Stock Markets
¢ Internet of Things
¢ Intrusion Detection

v Central Idea
¢ Classical Queries: Queries Change, Data Fixed
¢ View Maintenance: Data Changes, Queries Fixed, Slow Response
¢ Here: Data Changes, Queries Fixed, Fast Response

v Language Models
e Classical SQL w/ Windows
e Stream-specific query langs

v Challenges & Advantages
¢ Limited Compute Time: Want to deal with large numbers of records as they come in quickly.
« All compute requirements (structurally, at least) are given upfront.

¢ Typically specialized for bounded data sizes

» Cayuga
v Stream Definition Operators
v SELECT x, y, z FROM [stream]
¢ Classical Projection. Optionally defines a new stream
e Optional PUBLISH clause names the stream
v FILTER { condition } [stream]
e Classical Selection. Pass only tuples that pass a condition
v [stream] NEXT { condition } [stream]
e “JOIN”-like operation
v For each tuple on the LHS
* Find (and emit) the next tuple from the RHS that matches the condition
v [stream] FOLD { group_condition, done_condition, aggregate } [stream]
e “JOIN+AGGREGATE”-like operation
v For each tuple on the LHS
e Start a group
* Attach each tuple from the RHS that matches group_condition
¢ Update the group with the aggregate expression
« If the RHS tuple matches done_condition, close out the group and emit the aggregate
v Discussion
v Why not use regular joins
v Regular Joins are Non-Streaming
v Unclear when a tuple stops being relevant
* Unbounded memory use
* Steadily growing compute
v Language chosen to ensure finite state per tuple being joined
v NEXT: State = unmatched tuples from LHS
¢ One-One join
v FOLD: State = unfinished groups: Constant per LHS tuple
¢ One-Many join
¢ What about many/many?
v Hard to express temporal relationships w/ joins

e WHERE t2 > t1 and/or some sort of nested subquery trickery to get LIMIT

v Autometa



v DFA

v Data Model

* Nodes represent states

¢ Edges represent transitions

¢ One node designated as the “start” state

e One or more nodes designated as “terminal” or “output” states
v Language

« Start with an alphabet [Sigma]

¢ Edges labeled with letters in the alphabet

v Every node has an out-edge for every letter in the alphabet

¢ Implicit ‘error’ state if no edge for a letter given explicitly

v Evaluation

e Given a string in [Sigma]

e For each letter in the string travel the edge with the same label.

e "Success" if you end in one of the terminal states.

v NDFA
v Data Model
e Same as DFA, but allowed to have >1 edges with the same label.
v Evaluation
e At any given point in time, you can be “present” at multiple nodes/states
o [f at a state with multiple out-edges labeled with the same letter as the next letter in the string, travel to all of them in parallel
v Reduction to DFA
* Given an NDFA with N states (e.g., {A, B, C}), create a new graph with 2N states, call them hyperstates ({ {}, {A}, {B}, {C}, {AB}, {AC}, {BC}, {ABC})
¢ Each state represents the state of the NDFA where you are in some subset of the N states (there are 2AN such states)
v For each hyperstate (e.g., {AB})...
v For each letter in the alphabet
v For each state in the hyperstate (e.g., A and B)
« Compute the set of states that the state would transition to for that letter
« Compute the union of these states

« This is the hyperstate that you transition to

v Cayuga-Autometa
v Data Model

v Same as NDFA, but extended in one additional dimension: Every state has a set of associated instances
¢ Like a generalization from Zeroth- to First-order logic
* AlicelsAStudent -> AlicelsInClass vs IsStudent(x) -> IsInClass(x)
e Strictly more powerful (infinite number of states)

¢ In short, every state behaves like a relation

* Edges represent opportunities for tuples to travel from one relation to another.

v Edges are labeled with
* Condition (for the tuple to travel)
¢ Projection rule (for generating the new tuple)

v Reducing CEL to Cayuga

v SELECT
¢ (True, Projection Targets) -> Next State

v NEXT
e (~condition, ID) -> Same State
¢ (condition, ID) -> Next State

v FOLD
¢ (group_condition, aggregate) -> Same State
e (~group_condition, ID) -> Same State

e (done_condition, ID) -> Next State
























