
Stock Markets

Internet of Things

Intrusion Detection

Applications

Classical Queries: Queries Change, Data Fixed

View Maintenance: Data Changes, Queries Fixed, Slow Response

Here: Data Changes, Queries Fixed, Fast Response

Central Idea

Classical SQL w/ Windows

Stream-specific query langs

Language Models

Limited Compute Time: Want to deal with large numbers of records as they come in quickly.

All compute requirements (structurally, at least) are given upfront.

Typically specialized for bounded data sizes

Challenges & Advantages

Stream Processing

Overview

Classical Projection. Optionally defines a new stream

Optional PUBLISH clause names the stream

SELECT x, y, z FROM [stream]

Classical Selection. Pass only tuples that pass a condition

FILTER { condition } [stream]

“JOIN”-like operation

Find (and emit) the next tuple from the RHS that matches the condition

For each tuple on the LHS

[stream] NEXT { condition } [stream]

“JOIN+AGGREGATE”-like operation

Start a group

Attach each tuple from the RHS that matches group_condition

Update the group with the aggregate expression

If the RHS tuple matches done_condition, close out the group and emit the aggregate

For each tuple on the LHS

[stream] FOLD { group_condition, done_condition, aggregate } [stream]

Stream Definition Operators

Unbounded memory use

Steadily growing compute

Unclear when a tuple stops being relevant

One-One join

NEXT: State = unmatched tuples from LHS

One-Many join

FOLD: State = unfinished groups: Constant per LHS tuple

Language chosen to ensure finite state per tuple being joined

What about many/many?

Regular Joins are Non-Streaming

WHERE t2 > t1 and/or some sort of nested subquery trickery to get LIMIT

Hard to express temporal relationships w/ joins

Why not use regular joins

Discussion

Cayuga

Autometa

Nodes represent states

Edges represent transitions

One node designated as the “start” state

One or more nodes designated as “terminal” or “output” states

Data Model

Start with an alphabet [Sigma]

Edges labeled with letters in the alphabet

Implicit ‘error’ state if no edge for a letter given explicitly

Every node has an out-edge for every letter in the alphabet

Language

Given a string in [Sigma]

For each letter in the string travel the edge with the same label.

"Success" if you end in one of the terminal states.

Evaluation

DFA

Same as DFA, but allowed to have >1 edges with the same label.

Data Model

At any given point in time, you can be “present” at multiple nodes/states

If at a state with multiple out-edges labeled with the same letter as the next letter in the string, travel to all of them in parallel

Evaluation

Given an NDFA with N states (e.g., {A, B, C}), create a new graph with 2^N states, call them hyperstates ({ {}, {A}, {B}, {C}, {AB}, {AC}, {BC}, {ABC})

Each state represents the state of the NDFA where you are in some subset of the N states (there are 2^N such states)

Compute the set of states that the state would transition to for that letter

For each state in the hyperstate (e.g., A and B)

Compute the union of these states

This is the hyperstate that you transition to

For each letter in the alphabet

For each hyperstate (e.g., {AB})...

Reduction to DFA

NDFA

Like a generalization from Zeroth- to First-order logic

AliceIsAStudent -> AliceIsInClass vs IsStudent(x) -> IsInClass(x)

Strictly more powerful (infinite number of states)

Same as NDFA, but extended in one additional dimension: Every state has a set of associated instances

In short, every state behaves like a relation

Edges represent opportunities for tuples to travel from one relation to another.

Condition (for the tuple to travel)

Projection rule (for generating the new tuple)

Edges are labeled with

Data Model

(True, Projection Targets) -> Next State

SELECT

(~condition, ID) -> Same State

(condition, ID) -> Next State

NEXT

(group_condition, aggregate) -> Same State

(~group_condition, ID) -> Same State

(done_condition, ID) -> Next State

FOLD

Reducing CEL to Cayuga

Cayuga-Autometa

