File: Untitled Document 1 Page 1 of 1

Slide Credits:
Assembled by Team Alpha Nebula (Yash Narendra Saraf, Mohammud Umair, Deepak Ranjan)

1. For the presentation, we used the following slide deck available on AI-Sys Spring
2019 page of UC Berkeley.

- Course Page: https://ucbrise.github.io/cs294-ai-sys-spl9/#

- Presentation Link: https://ucbrise.github.io/cs294-ai-sys-spl9/assets/lectures/
lecO5/1learnedIndexes.pdf
2. We made some minor changes to the deck for our presentation. Following is the
presentation deck attached - Name: AlphaNebulaDeck.pdf
3. Apart from the above presentation deck, we also used the author Prof Tim Kraska's
presentation deck which we requested from the author. Link to the presentation
deck:https://t.co/oh5yimy2er?amp=1
4. Also, we referred to the author's Stanford Presentation Video to prepare slides-
Link: https://www.youtube.com/watch?v=Naql07rrXy0&t=2994s
5. The main reference was the original paper: https://dl-acm-org.gate.lib.buffalo.edu/
citation.cfm?i1d=3196909

The Case for Learned
Index Structures

John Yang | CS 294 | Feb 11, 2019

Outline

Background
Problem
Success Metrics
B-Trees
RM-Index
Hashmaps
Bloom Filters
Conclusions

W 00 N O W

25
28

Background

The State of System Design Today

Data Structures and Algorithms are
e General Purpose, “One Size Fits All”
e Assume nothing about data distribution
e Oblivious towards the nature of data

Pl £21-.

Background

Data Structure and Algorithm Domains

Join Sort Tree Scheduling Cache Bloom Filter

g s ® B O VYV

Problem

“One Size Does Not Fit All”

1. Traditional Data Structures do not account for the nature of data
a. Scales poorly with more data
b. Do not take advantage of common patterns in real world data
c. Suboptimal edge cases can fail with increases in computation time by orders of magnitude.

2. Learn the Data Distribution for Time, Space, Performance Improvements

a. Scale with complexity, not size
b. Machine Learning, Reinforcement Learning, and Neural Nets can replace, complement,
improve existing heuristics and system operations.

Problem

|ldea: Use Machine Learning Models to Learn Different Data Distributions and
Create Adaptive Structures and Algorithms

In some sense, indexes are already models, so it's worth exploring transitioning
from rigid index structures to learned, more flexible models.

Success Metrics

Traditional Systems Metrics
e |/O Count
e Space + Memory Requirements
e Query + Lookup Time

Model Metrics

Size of the Model

Amount of Overhead
Number of Training Iterations
Amount of Training Data

B-Trees | Range Index

[CPU Cache

L_EJ Main Memory

Disk / Main Memory

H |
B |

Key Innovations

B-Trees as a Modeling Problem

(a) B-Tree Index (b) Learned Index
Key Key
v v

Model
BTree (e.g., NN)

pos -0 pos + pagezise pos - min_err pos + max_er

Smaller Index

Faster Lookup

More Parallelism
Cheaper Insertion
Hardware Acceleration

Key Innovations

B-Trees as a Cumulative Distribution Function

Predicted Position = P(x < key) * # of Keys Whatls the distribution of

data?
(b) Learned Index o _
Key - Where is it coming from?
v
Model .
(e.g., NN) How does it look?

pos

pos - min_err pos + max_er

Key Innovations

Tensorflow Implementation of B-Tree Lookup

e 200M Web Server Log Records sorted by Timestamp

e 2 Layer Neural Network, 32-width fully connected, ReLU
Activation Function

e Given the timestamp, predict the position!

Results:
e Tensorflow: 1250 Predictions / Sec ~ 80000 ns Lookup
e B-Trees: 300 ns Lookup, 900 ns Binary Search across
entire data set

Key Results & Takeaways

1. Tensorflow is designed for running larger models. Python paired with
significant invocation overhead equals slower execution.
When is a model driven approach more appropriate than traditional indexes?

2. B Trees better at overfitting, more accurate at individual data instance level.
How does a model solve the “last mile” problem - Narrow down a data set

from large range to specific instance? (Overfitting?)

3. B Trees are cache efficient, keep relevant nodes and operations close by.

Deepak Ranjan

Learning Index Framework (LIF)

Problem: How to better investigate different models for index replacement or
optimization.

Solution: Learning Index Framework

e Index Synthesis System
Given an Index => Generate, optimize, and test different index configurations

o
e For simple models (e.g. linear regression), learns values on the fly
e For complex models, extract model weights and generate C++ index structure

Recursive Model Index (RMlI)

1.5 Million Records,
~60 Cycles

Problem: Accuracy of Last Mile Search

Solution: Recursive Regression Model
e Idea: Reduce error across a
hierarchy of models focusing on
subsets of data

24K Records,
120 Cycles

fa= Z (fE(LMefe—l(x)/NJ)@) —y)? Lo = Z (fo(z) = y)?

(z,y) (z,y)

Loss Function Loss Function Initialization

Hybrid Recursive Model Index

Problem: Specific Data at the bottom of RMI may be harder to learn

Solution: Combine different models at different layers of RMI
e Neural Nets at the top
e Simple Linear Regression on the bottom
e Fall back on B-Trees if data is particularly difficult to learn

Search Strategies

e Binary Search
e Biased Quaternary Search
e Exponential Search

Algorithm 1: Hybrid End-To-End Training

e 00 N NG e W N -

[
(=}

&R

e
- W

[
w

Input: int threshold, int stages[], NN_complexity
Data: record data[], Model index[][]
Result: trained index
M = stages.size;
tmp_records[][];
tmp_records[1][1] = all_data;
fori < 1to Mdo
for j « 1to stages[i] do
index[i][j] = new NN trained on tmp_records[i][j];
if i < M then
for r € tmp_records[i][j] do
p = index[i][j](r.key) / stages[i + 1];
tmp_records[i + 1][p].add(r);
for j «— 1toindex[M].size do
index[M][j].calc_err(tmp_records[M][j]);
if index[M][j].max_abs_err > threshold then
| index[M][j] = new B-Tree trained on tmp_records[M][j];
return index;

Experiments with LIF, RIM

Four Different Datasets

e Timestamps from weblogs (200 M)

e Longitudes from Maps (200 M)

e Data sample from log-normal distribution (190 M)
e String Document IDs (10 M, non linear!)

Experiment Results

Integer Datasets

Map Data Web Data Log-Normal Data

Type Config Size (MB) |Lookup (ns)] Model (ns) | Size (MB) |Lookup (ns)] Model (ns) | Size (MB) |Lookup (ns)] Model (ns)
Btree |page size: 32 52.45 (4.00x)] 274 (0.97x)] 198 (72.3%)] 51.93 (4.00x)] 276 (0.94x)| 201 (72.7%)| 49.83 (4.00x)|274 (0.96x)| 198 (72.1%)
page size: 64 26.23 (2.00x)| 277 (0.96x)] 172 (62.0%)] 25.97 (2.00x)| 274 (0.95x)] 171 (62.4%)| 24.92 (2.00x)|274 (0.96x)| 169 (61.7%)
page size: 128 13.11 (1.00x)| 265 (1.00x)| 134 (50.8%)] 12.98 (1.00x)| 260 (1.00x)| 132 (50.8%)] 12.46 (1.00x)]263 (1.00x)| 131 (50.0%)|

page size: 256 6.56 (0.50x)| 267 (0.99x)| 114 (42.7%)| 6.49 (0.50x)] 266 (0.98x)| 114 (42.9%)] 6.23 (0.50x)]271 (0.97x)] 117 (43.2%)

page size: 512 3.28 (0.25x)] 286 (0.93x)] 101 (35.3%)] 3.25 (0.25x)] 291 (0.89x)] 100 (34.3%)| 3.11 (0.25x)|293 (0.90x)] 101 (34.5%)
Learned [2nd stage models: 10k | 0.15 (0.01x)| 98 (2.70x)] 31 (31.6%)] 0.15 (0.01x)] 222 (1.17x)| 29 (13.1%)] 0.15 (0.01x)|178 (1.47x)|] 26 (14.6%)
Index |2nd stage models: 50k | 0.76 (0.06x)| 85 (3.11x)] 39 (45.9%)] 0.76 (0.06x)| 162 (1.60x)| 36 (22.2%)] 0.76 (0.06x)]162 (1.62x)|] 35 (21.6%)
2nd stage models: 100k | 1.53 (0.12x)| 82 (3.21x)] 41 (50.2%)) 1.53 (0.12x)| 144 (1.81x)| 39 (26.9%)] 1.53 (0.12x)|152 (1.73x)] 36 (23.7%)

2nd stage models: 200k | 3.05 (0.23x)| 86 (3.08x)] 50 (58.1%)] 3.05 (0.24x)] 126 (2.07x)] 41 (32.5%)] 3.05 (0.24x)|146 (1.79x)] 40 (27.6%)

Figure 4: Learned Index vs B-Tree

String Datasets

Experiment Results

Config Size(MB) Lookup (ns) Model (ns)

Btree page size: 32)| 1247 (1.03x) | 643 (52%)
page size: 64 6.56 (2.00x) | 1280 (1.01x) 500 (39%)

page size: 128 3.28 (1.00x) | 1288 (1.00x) 377 (29%)

page size: 256 1.64 (0.50x) | 1398 (0.92x) 330 (24%)

Learned Index |1 hidden layer 1.22 (0.37x) | 1605 10.80)() 503 (31%)
2 hidden layers 2.26 (0.69x) | 1660 (0.78x) | 598 (36%)

Hybrid Index |t=128, 1 hidden layer 1.67 (0.51x)| 1397 (0.92x) | 472 (34%)
t=128, 2 hidden layers 2.33 (0.71x) | 1620 (0.80x) 591 (36%)

t= 64, 1 hidden layer 2.50 (0.76x)| 1220 (1.06x) | 440 (36%)

t= 64, 2 hidden layers 2.79 (0.85x) | 1447 (0.89x) 556 (38%)

Learned QS 1 hidden layer 1.22 (0.37x) | 1155 (1.12x) | 496 (43%)

Figure 6: String data: Learned Index vs B-Tree

Experiment Results

Dataset

Server Logs (Timestamps)
Longitudes

Synthetic Log Normal Data

Strings (Document IDs)

Memory Savings
88%
99%
88%

63%

Speedup
1.88x
2.7x

1.8x

1.1x

Experiment Results | Alternative Baselines

Lookup Table EAST Fixe-Size Btree Multivariate
w/ AVX search w/ interpol. search Learned Index

. size | 163mB | 1024 MB 1.5 MB 1.5 MB

Figure 5: Alternative Baselines

Hashmaps | Point Index

Keys Buckets Entries
000 Lisa Smith 521-8976
001
002
|sa Smlth
Sam Doe

Sandra Dee 521-9655

%dndra Dee

Ted Baker 418-4165

Ted Baker 253
254

255 !\A Sam Doe 521-5030

Key Innovations

Hashmaps as a Model

Idea: Use Learned CDF as

(a) Traditional Hash-Map (b) Learned Hash-Map _
the Hash Function

Perfect CDF model should
have zero collisions

Key -
Hasb
Function

i Model

Independent of type of
hashmap

Key Results & Takeaways

% Conflicts Hash Map % Conflicts Model Reduction
Map Data 35.3% 07.9%
Web Data 35.3% 24.7% 30.0%
Log Normal 35.4% 25.9% 26.7% |

Figure 8: Reduction of Conflicts

Control / Base: MurmurHash3-like Hash Function
Model: 2-Stage RMI Models, 100k models on 2nd stage, no hidden layers

Key Results & Takeaways

Dataset |Slots | Hash Type | Time (ns) |Empty Slots Space
Map 75% [Model Hash 67 0.18GB
Random Has 52 0.84GB
100% | Model Hash 53 0.35GB
Random Has 48 1.58GB

125% |Model Hash 64 1.47GB 0.60x
Random Has 49 2.43GB

Web 75% | Model Hash 78 0.64GB 0.77x
Random Has 53 0.83GB

100% [Model Hash 63 1.09GB 0.70x
Random Has 50 1.56GB

125% |Model Hash 77 2.20GB 0.91x
Random Has 50 2.41GB

Log Normal | 75%|Model Hash 79 0.63GB 0.79x
Random Has 52 0.80GB

100% | Model Hash 66 1.10GB 0.73x
Random Has 46 1.50GB

125% | Model Hash 77 2.16GB 0.94x
Random Has 46 2.31GB

Figure 11: Model vs Random Hash-map

Conclusion: Actual benefits from
reducing conflicts depends on a variety
of factors (e.g. architecture, payload),
complexity not guaranteed to pay off

Small Payloads - Traditional Cuckoo
hashing works best

Larger Payloads + Distributed Settings
- Increased latency okay when
considering cache miss, conflict costs

Bloom Filters - Existence Index

Insert

key.
h,(key,) n(key.) Guarantees FNR=0; small (chosen) FPR.
h,(key,)

h,(key,)

h3(key2)

key,— no
Probe <

Key Innovations

Bloom Filters as Binary Classification

|dea: Binary Classification

Key
‘ Problem: False Negatives
Model Solution: Hybrid Model /

Bloom Filter

Y Bloom Filter- Approach 1

Is This Key In My Set? Is This Kfy In My Set?
Maybe
No

Maybe Yes No Maybe Yes No

36% Space Improvement over Bloom Filter
at Same False Positive Rate

Key Results & Takeaways

o

—— BloomFilter
—— W=128,E=32
— W=32,E=32
— W=16,E=32

S

N

Memory Footprint (Megabytes)

oS

15 2

0 o5 10
False Positive Rate (%)

Task: Determine if URLs are “good”. If bad, warn about phishing / hacked
Built with RNN, W is number of neurons, E is embedding size

36% Reduction in Memory

Future Implications & Research Areas

Conclusions
e Benefits of learned indexes are dependent upon the usage and architecture
of the data structure or algorithm in question
e Don’t necessarily replace, use traditional indexes alongside learned models

Questions
e \What factors can help guide the transition from a data structure or an
algorithm to an appropriate model?
e How can we effectively scale accuracy with size?
e \What are some principles for designing hybrid models?

