
File: Untitled Document 1 Page 1 of 1

Slide Credits: 
 
Assembled by Team Alpha Nebula (Yash Narendra Saraf, Mohammud Umair, Deepak Ranjan)
 
1. For the presentation, we used the following slide deck available on AI-Sys Spring 
2019 page of UC Berkeley. 
  - Course Page: https://ucbrise.github.io/cs294-ai-sys-sp19/#
  - Presentation Link: https://ucbrise.github.io/cs294-ai-sys-sp19/assets/lectures/
lec05/learnedIndexes.pdf
2. We made some minor changes to the deck for our presentation. Following is the 
presentation deck attached - Name: AlphaNebulaDeck.pdf
3. Apart from the above presentation deck, we also used the author Prof Tim Kraska's 
presentation deck which we requested from the author. Link to the presentation 
deck:https://t.co/oh5yimy2er?amp=1
4. Also, we referred to the author's Stanford Presentation Video to prepare slides- 
Link: https://www.youtube.com/watch?v=NaqJO7rrXy0&t=2994s
5. The main reference was the original paper: https://dl-acm-org.gate.lib.buffalo.edu/
citation.cfm?id=3196909



The Case for Learned 
Index Structures
John Yang | CS 294 | Feb 11, 2019



Outline
Background
Problem
Success Metrics
B-Trees
RM-Index
Hashmaps
Bloom Filters
Conclusions

3
5
7
8

13
21
25
28



Background

The State of System Design Today

Data Structures and Algorithms are
● General Purpose, “One Size Fits All”
● Assume nothing about data distribution
● Oblivious towards the nature of data



Background

Data Structure and Algorithm Domains

Join Sort Tree Scheduling Cache Bloom Filter



Problem
“One Size Does Not Fit All”

1. Traditional Data Structures do not account for the nature of data
a. Scales poorly with more data
b. Do not take advantage of common patterns in real world data
c. Suboptimal edge cases can fail with increases in computation time by orders of magnitude.

2. Learn the Data Distribution for Time, Space, Performance Improvements
a. Scale with complexity, not size
b. Machine Learning, Reinforcement Learning, and Neural Nets can replace, complement, 

improve existing heuristics and system operations.



Problem

Idea: Use Machine Learning Models to Learn Different Data Distributions and 
Create Adaptive Structures and Algorithms

In some sense, indexes are already models, so it’s worth exploring transitioning 
from rigid index structures to learned, more flexible models.



Success Metrics
Traditional Systems Metrics
● I/O Count
● Space + Memory Requirements
● Query + Lookup Time

Model Metrics
● Size of the Model
● Amount of Overhead
● Number of Training Iterations
● Amount of Training Data



B-Trees | Range Index

CPU Cache

Main Memory

Disk / Main Memory



Key Innovations
B-Trees as a Modeling Problem

● Smaller Index
● Faster Lookup
● More Parallelism
● Cheaper Insertion
● Hardware Acceleration



Key Innovations
B-Trees as a Cumulative Distribution Function

Predicted Position = P(x < key) * # of Keys What is the distribution of 
data?

Where is it coming from?

How does it look?



Key Innovations
Tensorflow Implementation of B-Tree Lookup

● 200M Web Server Log Records sorted by Timestamp
● 2 Layer Neural Network, 32-width fully connected, ReLU 

Activation Function
● Given the timestamp, predict the position!

Results:
● Tensorflow: 1250 Predictions / Sec ~ 80000 ns Lookup
● B-Trees: 300 ns Lookup, 900 ns Binary Search across 

entire data set



Key Results & Takeaways
1. Tensorflow is designed for running larger models. Python paired with 

significant invocation overhead equals slower execution.
When is a model driven approach more appropriate than traditional indexes?

2. B Trees better at overfitting, more accurate at individual data instance level.
How does a model solve the “last mile” problem - Narrow down a data set 
from large range to specific instance? (Overfitting?)

3. B Trees are cache efficient, keep relevant nodes and operations close by. On  
the other hand, neural nets require 

Deepak Ranjan



Learning Index Framework (LIF)
Problem: How to better investigate different models for index replacement or 
optimization.

Solution: Learning Index Framework
● Index Synthesis System
● Given an Index =>  Generate, optimize, and test different index configurations
● For simple models (e.g. linear regression), learns values on the fly
● For complex models, extract model weights and generate C++ index structure



Recursive Model Index (RMI) 
Problem: Accuracy of Last Mile Search

Solution: Recursive Regression Model
● Idea: Reduce error across a 

hierarchy of models focusing on 
subsets of data

Loss Function Loss Function Initialization

1.5 Million Records, 
~60 Cycles

24K Records,
120 Cycles



Hybrid Recursive Model Index
Problem: Specific Data at the bottom of RMI may be harder to learn

Solution: Combine different models at different layers of RMI
● Neural Nets at the top
● Simple Linear Regression on the bottom
● Fall back on B-Trees if data is particularly difficult to learn



Search Strategies
● Binary Search
● Biased Quaternary Search
● Exponential Search





Experiments with LIF, RIM 
Four Different Datasets
● Timestamps from weblogs (200 M)
● Longitudes from Maps (200 M)
● Data sample from log-normal distribution (190 M)
● String Document IDs (10 M, non linear!)



Experiment Results
Integer Datasets



Experiment Results
String Datasets



Experiment Results

Dataset Memory Savings Speedup

Server Logs (Timestamps) 88% 1.88x

Longitudes 99% 2.7x

Synthetic Log Normal Data 88% 1.8x

Strings (Document IDs) 63% 1.1x



Experiment Results | Alternative Baselines



Hashmaps | Point Index



Key Innovations
Hashmaps as a Model

Idea: Use Learned CDF as 
the Hash Function

Perfect CDF model should 
have zero collisions

Independent of type of 
hashmap



Key Results & Takeaways

Control / Base: MurmurHash3-like Hash Function
Model: 2-Stage RMI Models, 100k models on 2nd stage, no hidden layers



Key Results & Takeaways

Conclusion: Actual benefits from 
reducing conflicts depends on a variety 
of factors (e.g. architecture, payload), 
complexity not guaranteed to pay off

Small Payloads - Traditional Cuckoo 
hashing works best

Larger Payloads + Distributed Settings 
- Increased latency okay when 
considering cache miss, conflict costs





Key Innovations
Bloom Filters as Binary Classification

Idea: Binary Classification

Problem: False Negatives

Solution: Hybrid Model / 
Bloom Filter



Is This Key In My Set?

Maybe Yes No No

Maybe 
No

Is This Key In My Set?

Model

Maybe Yes

36% Space Improvement over Bloom Filter 
at Same False Positive Rate

Bloom Filter- Approach 1



Key Results & Takeaways

Task: Determine if URLs are “good”. If bad, warn about phishing / hacked
Built with RNN, W is number of neurons, E is embedding size

36% Reduction in Memory



Future Implications & Research Areas
Conclusions
● Benefits of learned indexes are dependent upon the usage and architecture 

of the data structure or algorithm in question
● Don’t necessarily replace, use traditional indexes alongside learned models

Questions
● What factors can help guide the transition from a data structure or an 

algorithm to an appropriate model?
● How can we effectively scale accuracy with size?
● What are some principles for designing hybrid models?


