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Why Scalable Linear Algebra System ?

. Data Analytics
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d  Machine Learning r A

. . Note: All th '

3 Large Scale Statistical Processing o5 X s Jrporant

application domains
. : . require linear algebra for
Also, since Data Analytics has become an important ’ %

its computations.
application for Modern Data Management Systems!!
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Efforts Towards Building Complete Data Management Systems

Support for Vectors, Matrices and Standard Operations on them
Storage and retrieval of Data to/fromdisk
Buffering / Caching of Data s

automatic logical/physical optimization of computations o

Recovery Note: Did you notice that
most of these features are
already supported in a
Relational Database System?
Is this new system really

necessary ?

O OO oo

Special purpose domain specific language
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Proposal

d A parallel or distributed system is an excellent platform upon

-
b

which a scalable linear algebra system can be built. )

1 Most Relational Systems have Cost Based Optimization which

Note: Also because data
analytics has become an
important application
for modern Data
Management Systems.

can be leveraged for scaling linear algebra computations.
1 If Scalable linear algebra is to be added to a modern dataflow
platform such as Spark, they should be added on top of the

system’s more structured relational data abstractions.
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Obvious Benefits Proposed Changes
A Eliminate “extract-transform-reload nightmare”. (d  Adding LABELED SCALAR, VECTOR and MATRIX data
A Eliminate the need to adopt yet another type of types to SQL-based relational system.
data processing system. d  Make Relational Query optimizer “linear algebra aware”
A Most or all of the decades worth of research A Changes to SQL that makes it easy to specify
aimed at distributed relational system, is directly complicated computations over vectors and matrices.
applicable. (A Language Mechanisms to support moving between

relational data, vectors and matrices.
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Distributed Multiplication of two Large Dense Matrices

First Iteration

(d  Matrix L is row partitioned

xX

d  Matrix R is Column partitioned
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At Every step, each of the
X C33 four processors compute

the next block of C in their

row in a cyclic fashion .To

produce C, as depicted in
- the following slide.
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At Every step, each of

the four processors

@ compute the next block
of Cin their row in a

round-robin fashion.

Result
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Matrix Multiplication in Relational Algebra Terms

| I

C33

(A Alocaljoin, in this case a cross product is

3

performed by iterating through every row in
block Lji to be combined with every column in
Rik to compute every element in Cjk, through
aggregation.

This is just a Relational algebra computation
over blocks making up Matrix L and Matrix R.
Benefits of Query optimization are directly

available.



% University at Buffalo The state University of New York

Why are the proposed changes Necessary?

d  Complexity of Writing Linear Algebra on top of SQL

. Performance: When expressing Linear Algebra through SQL
performance will be detoriated as they require several joins

and aggregate operations.

4 In a classical Iterator-based execution model there is a fixed

cost per tuple, which will translate to very high cost.
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Solution

d Adding LABELED_SCALAR, VECTOR and MATRIX --

data types to SQL-based relational system. g ~
»
1 Extensions in SQL language for manipulating
these types and moving between them. Introducing these non-normalized

data types cause the contents of
vectors and matrices to be
manipulated as a single unit
during query processing, and will
bring in significant performance.

10
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Introducing New Types

At the very highest level, we propose adding VECTOR,
MATRIX and LABELED SCALAR column types to SQL and

the relational model.

example:

create table m (mat MATRIX[10][10], vec VECTOR[100]);

11
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Built in Operation

In addition to standard arithmetic operations, linear algebra

operations are also defined over MATRIX and VECTOR types.

example: 7 ~.
¥ \
. . \
SELECT matrix_multiply(mat,mat) from m; \» While the first produces
SELECT mat *mat from m; Matrix product, the second

produces Hadamard product
of Matrix with itself.

12
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Moving Between Types

Matrix can be represented in different forms and moving

between them should be supported.

example:
mat(row INTEGER, col INTEGER, value DOUBLE) (or)

row_mat(row INTEGER, vec_value VECTOR[ ]) (or)
col_mat(col INTEGER, vec_value VECTOR[ ]) (or)
mat (value MATRIX[][])

13
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Denormalizing Vector Types

CREATE TABLE vy (i Integer, Y _i Double);

SELECT VECTORIZE (label_scalar (Y_i, i)) FROM y

i label scalar function
associates Y_i with label i.

VECTORIZE aggregates
label_scalar into vector

14
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Denormalizing Matrices

mat(row INTEGER, col INTEGER, value DOUBLE)

CREATE VIEW Vecs SELECT VECTORIZE(label_scalar (val,col))

AS vec, row from mat GROUP BY row;

""""""""""""""""""""" ROWMATRIX function
--"" RN aggregates a bunch of vectors
N as rows to form a matrix

SELECT ROWMATRIX (label_vector(vec, row)) FROM vecs;

15
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Implementation

e Implemented in java on top of SIMSQL
e Incremental not Revolutionary

e A small set of changes

16
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Normalizing

CREATE TABLE vecs ( vec VECTOR][ ]);

SELECT label.id, get_scalar(vecs.vec,
label.id) FROM vecs, label

17
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Distributed Matrices

e Should Individual matrices stored in RDBMS be allowed to be large enough to exceed the size of
RAM available on one machine.

e \ectors/Matrices are stored as attributes in tuples.

e What if one has a matrix that is too large to fit in RAM of an individual machine?

e Alarge dense matrix with 100,000 rows and 100,000 cols and requiring nearly a terabyte of data

can be stored as 100 tuples in the table

bigMatrix (tileRow INTEGER, tileCol INTEGER,
mat MATRIX[10000][1000017)

18
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Algebraic Operations

e Basic operations are implemented directly in java on top of their in memory representation
e Basic operations include extracting the diagonal of a matrix, scalar/Matrix multiplication
e For complex operations like Matrix/Matrix Multiplication and Matrix Inverse the data is transformed

into C++ objects and BLAS implementations are used.

19
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Balancing Distributed Computations

e Common way data is partitioned across machines is Hash partitioning
e Hash based partitioning is implicitly relies on the assumption that the number of data items is large
e The number of objects is ideally not large here. Therefore Hashing is ineffective.

e Why should number of objects be small in the first place?

20
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Balancing Distributed Computations

e Consider multiplying two 1015 * 10*5 matrices. Partitioning the matrices into 1000 * 1000 blocks
results in 10?4 different blocks.
e This join will output 1074 * 10*2 output blocks or 1076 * 8 MB = 8 TB of data has to be shuffled.

e If the block size is 10*4 * 10”4 then this would result in only 102 * 10 output blocks.
e Thisisless than 1TB of data to shuffle.

21
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Optimization in SImSQL

Consider the following Query

R (r_rid INTEGER, r_matrix MATRIX[10][100000])
SELECT matrix_multiply (r_matrix, s_matrix) FROMR, S, T

S(s_sid INTEGER, s_matrix MATRIX[100000][100])
WHERE r_rid =t_rid AND s_sid = t_sid

T (t_rid INTEGER, t_sid INTEGER)

1T >
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TypeSignatures

® Type signature for any function, that includes vectors and matrices is templated.

O diag(MATRIX[a][a]) -> VECTOR[3]
O  matrix_multiply(MATRIX[a][b], MATRIX[b][c]) -> MATRIX][a][c]

® For the query “SELECT matrix_multiply(u_matrix, v._matrix) FROM U, V” and schema “ U (u_matrix
MATRIX[1000][100]), V (v_matrix MATRIX[100][10000])”, size will be estimated as

1000 * 10000 * 8 bytes ~ 80 MB

e When dimension of a matrix is unknown, SimSQL estimates the dimension using the stats collected when

materialized views are created and data is loaded.
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Thank You!



